CRF&HMM模型——理论

12 篇文章 5 订阅 ¥9.90 ¥99.00
本文介绍了CRF和HMM两种模型在自然语言处理中的应用。CRF用于文本序列标注,解决了HMM中的隐马假设限制,提高准确性。HMM则依赖于隐马假设,适合快速预测,两者在NLP领域都有广泛应用。
摘要由CSDN通过智能技术生成

目录

1 CRF模型 

2 HMM模型


1 CRF模型 

  • CRF模型的输入和输出:
    • CRF(Conditional Random Fields),中文称作条件随机场,同HMM一样,它一般也以文本序列数据为输入,以该序列对应的隐含序列为输出。
  • CRF模型的作用:
    • 同HMM一样,在NLP领域, CRF用来解决文本序列标注问题.如分词,词性标注,命名实体识别。
  • CRF模型使用过程简述:
    • 首先,CRF模型表示为:lambda = CRF(w1, w2,...,wn),其中w1到wn是模型参数。
    • 接着,训练CRF模型,语料是一定数量的观测序列及其对应的隐含序列。
    • 同时,需要做人工特征工程,然后通过不断训练求得一组参数,使由观测序列到对应隐含序列的概率最大。
    • 训练后,得到具备预测能力的新模型:lambda = CRF(w1, w2,...,wn),其中的模型参数已经改变。
    • 之后给定输入序列(×1, ×2. ... xn),经过模型计算 lambda(x1, x2. .... xn) 得到对应隐含序列的条件概率分布。
    • 最后,使用维特比算法,从隐含序列的条件概率分布中找出概率最大的一条序列路径即为需要的隐含序列:(y1, y2,...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OR_0295

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值