目录
1 CRF模型
- CRF模型的输入和输出:
- CRF(Conditional Random Fields),中文称作条件随机场,同HMM一样,它一般也以文本序列数据为输入,以该序列对应的隐含序列为输出。
- CRF模型的作用:
- 同HMM一样,在NLP领域, CRF用来解决文本序列标注问题.如分词,词性标注,命名实体识别。
- CRF模型使用过程简述:
- 首先,CRF模型表示为:lambda = CRF(w1, w2,...,wn),其中w1到wn是模型参数。
- 接着,训练CRF模型,语料是一定数量的观测序列及其对应的隐含序列。
- 同时,需要做人工特征工程,然后通过不断训练求得一组参数,使由观测序列到对应隐含序列的概率最大。
- 训练后,得到具备预测能力的新模型:lambda = CRF(w1, w2,...,wn),其中的模型参数已经改变。
- 之后给定输入序列(×1, ×2. ... xn),经过模型计算 lambda(x1, x2. .... xn) 得到对应隐含序列的条件概率分布。
- 最后,使用维特比算法,从隐含序列的条件概率分布中找出概率最大的一条序列路径即为需要的隐含序列:(y1, y2,...