MOOC《人工智能:模型与算法》笔记 chapter 3

逻辑与推理是人工智能的核心问题。这一章主要介绍了逻辑与推理的相关内容,分别从命题逻辑,谓词逻辑,知识图谱推理这三个方面来介绍。

一·命题逻辑

命题逻辑 (Propositional Logic) 是应用一套形式化规则对以符号表 示的描述性陈述进行推理的系统。 在命题逻辑中,一个或真或假的描述性陈述被称为原子命题,对原子命题的内部结构不做任何解析。若干原子命题可通过逻辑运算符来构成复合命题。

逻辑等价: 给定命题 𝑝 和命题 𝑞 ,如果 𝑝 𝑞 在所有情况下都具有同样真假结果,那么𝑝 𝑞 在逻辑上等价,一般用 来表示,即 𝑝 ≡ 𝑞
逻辑等价为命题进行形式转换带来了可能,基于这些转换不再需要逐一列出𝑝和 𝑞 的真值表来判断两者是否在逻辑上等价,而是可直接根据已有逻辑等价公式来判断𝑝 𝑞 在逻辑上是否等价。
(对于命题 𝛼,若为真,则¬ 𝛼为假。𝛼,¬ 𝛼不可能同时为真或假)
命题范式
有限个简单合取式构成的析取式称为 析取范式
由有限个简单析取式构成的合取式称为 合取范式
析取范式与合取范式统称为 范式 (normal form)
假设 𝛼 𝑖 (𝑖 = 1,2, … , 𝑘) 为简单的合取式,则 𝛼 = 𝛼 1 ∨ 𝛼 2 ∨ ⋯ ∨ 𝛼 𝑘 为析取范式
例如: (¬ 𝛼 1 ∧ 𝛼 2 ) ∨ 𝛼 3 , ¬ 𝛼 1 ∨ 𝛼 3 ∨ 𝛼 2
假设 𝛼 𝑖 (𝑖 = 1,2, … , 𝑘) 为简单的析取式,则 𝛼 = 𝛼 1 ∧ 𝛼 2 ∧ ⋯ ∧ 𝛼 𝑘 为合取范式
例如: (𝛼 1 ∨ 𝛼 2 ) ∧ ¬𝛼 3 , ¬ 𝛼 1 ∧ 𝛼 3 ∧ ¬𝛼 2 ∨ 𝛼 4
一个析取范式是不成立的,当且仅当它的每个简单合取式都不成立。
一个合取范式是成立的,当且仅当它的每个简单析取式都是成立的。
任一命题公式都存在着与之等值的析取范式与合取范式 ( 注意:命题公式的析取范式与合取范式都不是唯一的)
        问题:求¬( α → 𝛽) ∨ ¬𝛾 的析取范式与合取范式
¬ ( α → 𝛽 )∨ ¬𝛾
⟺ ¬ (¬ α ∨ 𝛽 )∨ ¬𝛾
⟺ ( α ∧ ¬𝛽) ∨ ¬𝛾 析取范式
⟺ ( α ∨ ¬𝛾 )∧ (¬𝛽 ∨ ¬𝛾) 合取范式

二·谓词逻辑

命题逻辑的局限性

在命题逻辑中,每个陈述句是最基本的单位 ( 即原子命题) ,无法对原子命题进行分解。因此在命题逻辑中,不能表达局部与整体、一般与个别的关系。
例如,对于苏格拉底论断,虽知其正确的,但无法通过命题逻辑来进行推理判断:
𝛼:所有的人总是要死的
𝛽 :苏格拉底是人
𝛾 :所以苏格拉底是要死的
𝛼 ∧ 𝛽 → 𝛾 (不是命题逻辑的有效推理) 无法在命题逻辑基础上完成这样的推导
解决思路:
不同原子命题蕴含个体、群体和关系等内在丰富语义,命题逻辑无法表现内在丰富语义。因此,需要分析原子命题,分离其主语(个体或群体)和谓语(关系)。
需要引入更加强大的逻辑表示方法,这就是谓词逻辑

谓词逻辑

在谓词逻辑中,将原子命题进一步细化,分解出个体、谓词和量词,来表达个体与总体的内在联系和数量关系,这就是谓词逻辑研究内容。
谓词逻辑中三个核心概念: 个体、谓词(predicate )和量词( quantifier

谓词逻辑:谓词与个体

𝑃(𝑥) 表示:𝑥 <x^{2}
𝑃是谓词, 𝑥是个体词, 𝑥 被称为变量。 𝑥 的具体取值叫个体常项。比如,𝑃(0.1) 和 𝑃(0.02) 使得谓词为假。个体的取值范围为个体域。
一般用大写字母 𝑃,𝑄, 𝑅 等来表示谓词。上述 𝑃(𝑥) 描述了是否存在一个数,这个数小于自身平方这种关系。
谓词中可以有若干个个体变量,如 father(𝑥, 𝑦) 表示 𝑥 𝑦 父亲。
𝑃(𝑥) 是一元谓词(包含一个个体), 𝑃(𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ) 被称为 𝑛 元谓词(包含若干个体)。

谓词逻辑:量词

全称量词 (universal quantifier, )
全称量词用符号 表示,表示一切的、凡是的、所有的、每一个等。 ∀𝑥 表示定义域中的所有个体, ∀𝑥𝑃(𝑥) 表示定义域中的所有个体具有性质 𝑃
谓词 𝑃(𝑥) 𝑥 能够制造工具 ∀𝑥𝑃(𝑥) 表示定义域中的所有个体能够制造工具。 𝑃( 小王 ) 表示小王能够制造工具。
存在量词 (existential quantifier, )
存在量词用符号 表示,表示存在、有一个、某些等。 ∃𝑥 表示定义域中存在一个或若干个个体, ∃𝑥𝑃(𝑥) 表示定义域中存在一个个体或若干个体具有性质 𝑃
谓词 𝑃(𝑥) 𝑥 能够制造工具。 ∃𝑥𝑃(𝑥) 表示定义域中的存在某个/某些个体能够制造工具。 𝑃( 小王 ) 表示小王能够制造工具(该命题或者为真、或者为假)。
全称量词和存在量词统称为量词。
全称量词与存在量词之间的组合
∀𝑥¬𝑃(𝑥) ≡ ¬∃𝑥𝑃(𝑥)  定义域中任意个体x不具有性质P=不存在x具有性质P    
¬∀𝑥𝑃(𝑥) ≡ ∃𝑥¬𝑃(𝑥)  定义域中不是任意个体x都具有性质P=存在x不具有性质P 
∀𝑥𝑃(𝑥)≡ ¬∃𝑥¬𝑃(𝑥)   定义域中任意个体x具有性质P=不存在x不具有性质P 
∃𝑥𝑃(𝑥) ≡ ¬∀𝑥¬𝑃(𝑥)  定义域中存在个体x具有性质P=不存在任意个体x都不具有性质P

函数与谓词的区别

函词中个体变元用个体常量(来自定义域)代入后结果仍是 个体(值域) ,如定义函数 𝑓(𝑥) = 𝑥 + 10 ,则 𝑓(2) = 12
谓词中个体变元用个体常量带入后就变成了 命题 ,如 𝑐𝑎𝑟(𝑥)。(𝑥 是车 ) 这个谓词中 𝑥 用吉普车代替,则 𝑐𝑎𝑟( 吉普车)是命题。
  函数是从定义域到值域的映射;谓词是从定义域到{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 的映射

谓词演算的合式公式

命题常项、命题变项、原子谓词(不存在任何量词与联结词)是合式公式。
如果 𝐴 𝐵 是合式公式,那么 ¬𝐴 𝐴 ∧ 𝐵 𝐴 ∨ 𝐵 𝐴 → 𝐵 、 𝐴 ⟷ 𝐵 都是合式公式
如果 𝐴 是合式公式, 𝑥 是个体变元,则 ∃𝑥𝐴(𝑥) 和∀𝑥𝐴(𝑥)也是合式公式
有限次地使用上述规则求得公式是合式公式

若干谓词逻辑的推理规则

全称量词消去 (Universal Instantiation, UI) : (∀𝑥)𝐴(𝑥) → 𝐴(𝑦)
全称量词引入(Universal Generalization, UG): 𝐴(𝑦)→ (∀𝑥)𝐴(𝑥)
存在量词消去 (Existential Instantiation, EI): (∃𝑥)𝐴(𝑥) → 𝐴(𝑐)
存在量词引入 (Existential Generalization, EG): 𝐴(c) → (∃𝑥)𝐴(𝑥)

自然语言的形式化

每一个奇数均存在一个大于它的奇数:
odd(𝑥)  : 𝑥 是奇数
Great(x, y) : 𝑥 大于 𝑦
(∀𝑥)(𝑜𝑑𝑑(𝑥)→ (∃𝑦)(𝑜𝑑𝑑(𝑦)∧ 𝐺𝑟𝑒𝑎𝑡(𝑦, 𝑥)))

三·知识图谱推理

3.1知识图谱:基本概念

3.2知识图谱的构成

由于三峡大坝和葛洲坝都位于长江流域,它们之间具有反调节关系。而大古力水坝和达拉斯水坝都位于哥伦比亚河,所以推断它们之间也具有反调节关系。
学习概念或实体属性描述及其关联关系是丰富知识图谱的关键!

3.3知识图谱推理

归纳学习

归纳逻辑程序设计 (inductive logic programming ILP) 算法是机器学习和逻辑程序设计交叉领域的研究内容。ILP使用一阶谓词逻辑进行知识表示,通过修改和扩充逻辑表达式对现有知识归纳,完成推理任务。作为ILP 的代表性方法,一阶归纳学习 FOIL First Order Inductive Learner )通过 序贯覆盖 实现规则推理。
背景知识:知识图谱中目标谓词以外的其他谓词实例化结果,如𝑆𝑖𝑏𝑙𝑖𝑛𝑔 (Ann, Mike)
推理思路:从一般到特殊,逐步给目标谓词添加前提约束谓词,直到所构成的推理规 则不覆盖任何反例。
从一般到特殊 : 对目标谓词或前提约束谓词中的变量赋予具体值 , 如将 (∀𝑥)(∀𝑦)(∀𝑧) (𝑀𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑦)∧ 𝐶𝑜𝑢𝑝𝑙𝑒(𝑥, 𝑧)→ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦))这一推理规则所包含的目标谓词𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦) 𝑥 𝑦 分别赋值为 David Ann ,进而进行推理。
推理过程
1.将 𝑀𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦)作为前提约束谓词加入,可得到推理规则𝑀𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦)→ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦),
2.在背景知识中, 𝑀𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦) 有两个实例 :𝑀𝑜𝑡ℎ𝑒𝑟(James, Ann) ,𝑀𝑜𝑡ℎ𝑒𝑟(James, Mike)
3.对于 𝑀𝑜𝑡ℎ𝑒𝑟 (James, Ann) 这一实例, x = James y = Ann ,将 𝑥 𝑦 代入𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)得到 𝐹𝑎𝑡ℎ𝑒𝑟 (James, Ann),可知在训练样本中𝐹𝑎𝑡ℎ𝑒𝑟(James, Ann) 是一个反例
对于 𝑀𝑜𝑡ℎ𝑒𝑟 (James, Mike) 这一实例, x= James y = Mike ,将 𝑥 𝑦代入𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)得到𝐹𝑎𝑡ℎ𝑒𝑟(James, Mike),可知在训练样本中𝐹𝑎𝑡ℎ𝑒𝑟 (James, Mike) 是一个反例
4.𝑀𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦)→ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)覆盖正例和反例数量分别为0和2,即𝑚 + = 0,𝑚 − = 2,
由于 𝑚 + = 0 ,代入 𝐹𝑂𝐼𝐿_𝐺𝑎𝑖𝑛 公式时会出现负无穷的情况,此时𝐹𝑂𝐼𝐿_𝐺𝑎𝑖𝑛 记为 NA Not Available
5.如果将𝐶𝑜𝑢𝑝𝑙e(𝑥, 𝑧)作为前提约束谓词加入,可得到如下推理规则𝐶𝑜𝑢𝑝𝑙e(𝑥, 𝑧) → 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦),在背景知识中,𝐶𝑜𝑢𝑝𝑙e(𝑥, 𝑧)只有一个实例𝐶𝑜𝑢𝑝𝑙e(David, James),即𝑥=David,𝑧= James,将其代入 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)得到𝐹𝑎𝑡ℎ𝑒𝑟(David, 𝑦)。
6.在训练样本中存在正例 𝐹𝑎𝑡ℎ𝑒𝑟 (David,Mike)以及反例¬𝐹𝑎𝑡ℎ𝑒𝑟(David, James),即𝐶𝑜𝑢𝑝𝑙e(𝑥, 𝑧) → 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)覆盖正例和反例数量分别为1和1。信息增益值为:

𝐶𝑜𝑢𝑝𝑙e(𝑥, 𝑧) 加入后信息增益最大。将 𝐶𝑜𝑢𝑝𝑙e(𝑥, 𝑧) 加入推理规则 , 得到 𝐶𝑜𝑢𝑝𝑙𝑒(𝑥, 𝑧)→ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)新推理规则。 将训练样例中与该推理规则不符的样例去掉。这里不符指当𝐶𝑜𝑢𝑝𝑙𝑒(𝑥, 𝑧) 𝑥 取值为 David 时,与𝐹𝑎𝑡ℎ𝑒𝑟 (David, ) ¬𝐹𝑎𝑡ℎ𝑒𝑟 (David, ) 无法匹配的实例。所以此时训练样本集中只有正例𝐹𝑎𝑡ℎ𝑒𝑟 (David, Mike) 和负例¬𝐹𝑎𝑡ℎ𝑒𝑟 (David, James) 两个实例。
𝑀𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑦) 加入信息增益最大。将𝑀𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑦) 加入,得到新推理规则 𝑴𝒐𝒕𝒉𝒆𝒓(𝒛, 𝒚)∧ 𝑪𝒐𝒖𝒑𝒍𝒆(𝒙, 𝒛)→ 𝑭𝒂𝒕𝒉𝒆𝒓(𝒙, 𝒚) x= David y =Mike z = James 时,该推理规则覆盖训练样本集合中正例𝐹𝑎𝑡ℎ𝑒𝑟 (David, Mike) 且不覆盖任意反例,因此算法学习结束。
给定目标谓词, FOIL 算法从实例(正例、反例、背景样例)出发,不断测试所得到推理规则是否还包含反例,一旦不包含负例,则学习结束,展示了 “ 归纳学习 ”能力。
  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值