11-04Physics-Aware Learning-based Longitudinal Vehicle Trajectory Prediction in Congested Traffic

Physics-Aware Learning-based Longitudinal Vehicle Trajectory Prediction in Congested Traffic

摘要

拥挤交通中的冲击波通常会造成负面影响,包括额外的旅行时间、安全风险和能源消耗。基于学习的轨迹预测模型利用周围车辆的历史轨迹作为输入,而不考虑冲击波的影响,而基于物理的模型利用冲击波来预测轨迹,但预测性更差。为了将冲击波的物理特性纳入基于学习的模型,本研究提出了一个基于物理感知的学习模型,用于互联车辆环境中的多步骤轨迹预测。采用高粒度的高速公路模拟轨迹数据集进行训练和验证。实验结果表明,所提出的混合模型比基于学习的模型(如长短期记忆神经网络和卷积神经网络)产生更好的可预测性,位置误差提高了11%,速度误差提高了5%。关于对冲击波物理学的认识的实验验证了冲击波对基于学习的模型的积极影响。此外,车联网市场渗透率分析表明,随着市场渗透率的增加,可预测性变得更好。而提出的混合模型比基于学习的模型要好,有3-14%的好处。

INTRODUCTION

本研究的贡献包括以下几个方面。
1)建立了基于物理学认知的模型和三个基准(即基于物理学的模型、基于CNN的模型和基于LSTM的模型),并对拥堵交通中的多步骤纵向轨迹预测进行了比较。
2)用基于学习的轨迹预测模型研究了对冲击波物理学的认识。
3)市场渗透率分析表明,所提出的模型在不同的CV MPR中被验证是有效的。

METHODOLOGY

LSTM-based model

请添加图片描述

输入层

𝑡∈ [ 𝑡 ∗ - 𝐾 - Δ𝑡 , 𝑡 ∗ ] ,其中 𝑡 ∗ 是当前时间,Δ𝑡 是时间间隔,𝐾 - 是历史时间步数。每个输入层包含一个形状为( 𝑆 , 𝐾 - , 2 )的输入,其中𝑆是样本数据的数量。而𝑀+1个输入层代表𝑀+1辆车。

归一化层

一种特征缩放技术(如标准缩放器或Min-Max缩放器)被用来将实际输入归一化为具有给定范围(如[ -1 , 1 ] )的缩放输入𝑥 𝑛 ( t )。这有助于提高训练效果。

连接层

在进入LSTM层之前,所有的输入被合并为一个三维数据,其形状为(𝑆 , 𝐾 - , 2 ( 𝑀 + 1 ) )

LSTM层

LSTM层的数量为𝐿。在LSTM层𝑙∈[ 1 , 𝐿 ] 中,单元数为𝐶𝑙。在最后一个LSTM层𝐿之前,每一层的输出的形状为( 𝑆 , 𝐾 - , 𝐶 𝑙 &#x

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值