引言
在当今人工智能应用中,很多开发者依赖OpenAI API以获取自然语言处理的强大能力。但是,由于某些地区的网络限制或商业考虑,使用替代方案成为了很多开发者的选择。vLLM是一个可以部署成服务器的解决方案,它能够模拟OpenAI API的协议,从而成为应用程序的替代选择。在这篇文章中,我们将指导你如何通过使用langchain-openai
包来开始使用vLLM聊天模型。
主要内容
vLLM简介
vLLM可以作为一种替代方案,帮助开发者在本地或其他环境中无缝替代OpenAI API。通过vLLM,开发者可以继续使用相同的API调用格式,从而无需对现有应用程序进行大的改动。
安装与设置
要访问vLLM模型,需要安装langchain-openai
集成包。这提供了一套接口,使得vLLM模型可以通过LangChain框架进行调用。
%pip install -qU langchain-openai
模型初始化与调用
首先,我们需要实例化一个模型对象并生成聊天补全。以下是完整的代码示例:
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
# 使用API代理服务提高访问稳定性
inference_server_url = "http://localhost:8000/v1"
llm = ChatOpenAI(
model="mosaicml/mpt-7b",
openai_api_key="EMPTY",
openai_api_base=inference_server_url,
max_tokens=5,
temperature=0,
)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to Italian."
),
HumanMessage(
content="Translate the following sentence from English to Italian: I love programming."
),
]
response = llm.invoke(messages)
print(response)
链式调用
我们还可以将模型与提示模板结合使用,实现更为复杂的操作。
from langchain_core.prompts.chat import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
result = chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
print(result)
常见问题和解决方案
-
网络访问限制:一些用户可能会在访问vLLM服务器时遇到网络限制的问题。在这种情况下,考虑使用API代理服务来提高连接的稳定性和可靠性。
-
凭证问题:确保正确配置了用户的API密钥和其他认证信息。在设置中,未设置
openai_api_key
的情况下,必须确保服务器允许未验证的请求。
总结:进一步学习资源
参考资料
- LangChain 官方文档
- vLLM GitHub 仓库
- LangChain OpenAI API 参考
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—