[轻松搭建你的vLLM Chat服务,替代OpenAI API的理想选择]

引言

在当今人工智能应用中,很多开发者依赖OpenAI API以获取自然语言处理的强大能力。但是,由于某些地区的网络限制或商业考虑,使用替代方案成为了很多开发者的选择。vLLM是一个可以部署成服务器的解决方案,它能够模拟OpenAI API的协议,从而成为应用程序的替代选择。在这篇文章中,我们将指导你如何通过使用langchain-openai包来开始使用vLLM聊天模型。

主要内容

vLLM简介

vLLM可以作为一种替代方案,帮助开发者在本地或其他环境中无缝替代OpenAI API。通过vLLM,开发者可以继续使用相同的API调用格式,从而无需对现有应用程序进行大的改动。

安装与设置

要访问vLLM模型,需要安装langchain-openai集成包。这提供了一套接口,使得vLLM模型可以通过LangChain框架进行调用。

%pip install -qU langchain-openai

模型初始化与调用

首先,我们需要实例化一个模型对象并生成聊天补全。以下是完整的代码示例:

from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI

# 使用API代理服务提高访问稳定性
inference_server_url = "http://localhost:8000/v1"

llm = ChatOpenAI(
    model="mosaicml/mpt-7b",
    openai_api_key="EMPTY",
    openai_api_base=inference_server_url,
    max_tokens=5,
    temperature=0,
)

messages = [
    SystemMessage(
        content="You are a helpful assistant that translates English to Italian."
    ),
    HumanMessage(
        content="Translate the following sentence from English to Italian: I love programming."
    ),
]

response = llm.invoke(messages)
print(response)

链式调用

我们还可以将模型与提示模板结合使用,实现更为复杂的操作。

from langchain_core.prompts.chat import ChatPromptTemplate

prompt = ChatPromptTemplate(
    [
        (
            "system",
            "You are a helpful assistant that translates {input_language} to {output_language}.",
        ),
        ("human", "{input}"),
    ]
)

chain = prompt | llm
result = chain.invoke(
    {
        "input_language": "English",
        "output_language": "German",
        "input": "I love programming.",
    }
)

print(result)

常见问题和解决方案

  1. 网络访问限制:一些用户可能会在访问vLLM服务器时遇到网络限制的问题。在这种情况下,考虑使用API代理服务来提高连接的稳定性和可靠性。

  2. 凭证问题:确保正确配置了用户的API密钥和其他认证信息。在设置中,未设置openai_api_key的情况下,必须确保服务器允许未验证的请求。

总结:进一步学习资源

参考资料

  1. LangChain 官方文档
  2. vLLM GitHub 仓库
  3. LangChain OpenAI API 参考

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值