pandas中关于DataFrame去掉重复行和NaN行

1.去掉重复行

使用pandas自带的drop_duplicates方法:

norepeat_df = df.drop_duplicates(subset=['A_ID', 'B_ID'], keep='first')
#去掉A_ID和B_ID列中重复的行,并保留重复出现的行中第一次出现的行

补充:
当keep=False时,就是去掉所有的重复行
当keep=‘first’时,就是保留第一次出现的重复行
当keep='last’时就是保留最后一次出现的重复行。
(注意,这里的参数是字符串,要加引号!!!)

2.去掉NaN行

使用pandas自带的dropna()方法:

#删除表中某行全部为NaN的行
nonan_df = df.dropna(axis=0, how='all')

#删除表中某行含有任何NaN的行
nonan_df = df.dropna(axis=0, how='any')  

补充:
删除行的参数axis = 0
删除列的参数axis = 1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值