微生信 -- 0代码科研绘图,助力发高分文章

1,粘贴数据,一键出图

www.bioinformatics.com.cn微生信云平台以220多款在线绘图、分析模块为基础,致力于0代码在线分析数据,0代码在线绘制科研图片。让不会编写代码的科研工作者,贴贴数据,点点鼠标就能够进行数据分析和科研绘图,沉浸在数据分析和绘图所带来的便捷和喜悦中,助力发文章,发高分文章,为生命科学的发展添砖加瓦。

1. 微生信云平台使用模式图

2,各式各样,绘你所需

目前,云平台可以绘制图片类型高达220多种。

常规绘图约60种,包括:条形图,柱状图,饼图,折线图,面积图,漏斗图,box图,小提琴图,Venn图等

生命科学,医学等领域专业绘图约120种,包括:气泡图,火山图,热图, GO三合一图,pathway图,GO弦图,相关系数图,GSEA图,circos图,森林图,KM曲线等

地图约20多种,包括:世界地图,中国地图,各省份地图等

其他分析模块约20种,包括:fasta序列处理,DESeq2差异分析,limma差异分析,GOKEGG富集分析,GSEA分析等。

2. 不同场景例图

3, 文章引用,高分支撑

微生信英文版SRplot发表在PLOSONE杂志上,再也不用担心引用问题了。刚发表一个多月就有9篇正式引用了。

同时以 bioinformatics.com.cn”为关键词在google scholar中检索,可以找到约2360篇文章。

3. 谷歌学术查询结果

以“微生信”为关键词,在中国知网中检索,中文科技类约1900篇。

4. 中国知网CNKI查询结果

经过初步检索,Nature biotechnologyNature communications等高分杂志都有我们的身影。

5. 高分论文使用

4,从零开始,创造无限

随着生物信息学的蓬勃发展,产生了大量数据,数据分析和可视化逐渐成为制约生命科学发展的瓶颈。微生信平台以220多款工具为依托,致力于将数据分析和数据可视化简单化,规范化,让用户专注于生物医学本身的问题,挖掘数据背后的现象和规律。作为生物信息学领域的科研工作者,我们会不断推陈出新,充分利用云平台,云计算,提高用户的科研效率,帮助用户发高分文章,推动生命科学的发展。

5,三年相伴,感恩有你

上线三年多来,微生信注册用户13.8,完成作图/分析任务210万个(截止20231228日)。同时我们也收到了许多用户的反馈和建议,感谢你们!我们会一如既往地维护微生信,分享知识,帮助更多的人轻松做科研。同时也非常期待与大家深入交流和合作。

感谢团队成员:杰哥、易哥、麦哥、黄工、张工、王博、曾博、王姐、一姐。

感谢网友:曾鹏,马越,骨头菌,网,海阔天空,想飞的鱼,赤道不下雪,ysj,爱笑的女孩儿,Dannia,曾令杰,PermannentLiber,奥特曼,王医生…

感谢认可支持微生信平台的朋友们,把微生信推荐给了身边的同学、同事和朋友…

同时,特别感谢上海纽科生物科技有限公司以及家人的支持和鼓励!

祝大家节日快乐,多发顶刊!

内容概要:《2024年中国城市低空经济展指数报告》由36氪研究院布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从展环境、资金投入、创新能力、基础支撑和展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济展中的表现和潜力;④为政策制定、投资决策和企业展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向展,各地应找准自身比较优势,实现差异化展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值