微生信在线绘制KEGG Pathway通路分类汇总图

这篇博客介绍了如何利用KEGGPathway数据库进行通路分类,并重点讲解了一个在线工具,该工具能快速绘制pathway富集结果的分类图。用户只需上传数据,选择参数,即可生成分类图,并提供多种格式的下载。该工具简化了通路分析的过程,尤其适用于denovo测序注释和常规的pathway富集分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KEGG Pathway分析是文献中几乎必备的一项功能分析。在pathway富集分析中,我们一般关注的是输入基因富集到哪些通路,但是殊不知,这些通路还可以进行分类汇总。

在KEGG官网(KEGG PATHWAY Database)中,将通路分成了7类:

1. Metabolism  (代谢)
2. Genetic Information Processing (遗传信息处理)
3. Environmental Information Processing (环境信息处理)
4. Cellular Processes (细胞过程)
5. Organismal Systems (生物系统)
6. Human Diseases (人类疾病)
7. Drug Development (药物开发)

每一类又包含若干个子类,每个子类包含了若干个pathway。因此与gene ontology类似,我们可以根据上面的6类(一般不包括最后一个“药物开发”)将pathway分类汇总,做出一个分类汇总图,这样可以在更上一层级研究pathway。主要应用于特殊物种的denovo测序注释,也可以应用于我们常规的pathway富集分析。

页面列出了几百个通路的所属关系,手工查询耗时耗力。微生信平台根据这些所属关系,开发了一个pathway分类在线绘图页面。我们来看看吧!

 

Pathway分类汇总例图

让我们一步一步来看这个图的做法!

1,打开绘图页面链接

微生信-免费在线绘制pathway富集结果分类图

Pathway富集结果分类图页面

若小伙伴没还没有注册,赶紧注册上车,带你领略100多款科研图的使用和绘制,页面下方有测试账号哦!

2,整理输入数据,并粘贴

我们以clusterprofiler结果为例,获得的kegg富集结果如下:

Pathway富集结果

我们将标黄的两贴单独拎出来,粘贴到页面输入框中

粘贴数据

3,选择参数,提交

参数主要包括字体大小和颜色,可以选择每一个大类的颜色。

参数和颜色

4,调整及出图

提交后约3s钟,会在右侧出图。

结果图片

可以看出,我们这个数据集中有两个通路的名字跟官网的不一样,要自己搜索,并修改数据,重新提交。

例如,经过查询,我们把

Chagas disease (American trypanosomiasis) 改成 Chagas disease

Cell adhesion molecules (CAMs) 改成Cell adhesion molecules

然后重新提交,即可出来最终的图。并且我们提供了4种格式图片供下载,包括两种矢量图(SVGPDF)和两种标量图(PNGtiff)。其中矢量图可以使用AI或者inkscape根据自己的喜欢进行编辑调整。

是不是很简单方便呢?赶紧来试试吧!

KEGG富集分析是一种常用的生物信息学分析方法,用于研究基因或蛋白质的功能和通路富集情况。在R语言中,可以使用Bioconductor中的包来进行KEGG富集分析,其中包括KEGGREST和clusterProfiler。 首先,你需要安装并加载这些包。可以使用下面的代码来完成这一步骤: install.packages("BiocManager") BiocManager::install("KEGGREST") BiocManager::install("clusterProfiler") library(KEGGREST) library(clusterProfiler) 接下来,你需要准备好你的基因列表,并使用KEGGREST包中的函数获取基因对应的KEGG通路信息。下面是一个示例代码,你可以根据你的需要进行修改: gene_list <- c("gene1", "gene2", "gene3") # 替换为你的基因列表 kegg_pathways <- keggGet("pathway", "hsa", "list") # 获取KEGG通路列表 gene_pathway <- enrichKEGG(gene = gene_list, organism = "hsa", pvalueCutoff = 0.05) # 进行KEGG富集分析 最后,你可以使用clusterProfiler包中的函数来可视化KEGG富集分析结果,比如绘制富集通路的柱状图、网络图等。以下是一个绘制柱状图的示例代码: barplot(gene_pathway, showCategory = 10) # 显示前10个富集通路 通过以上步骤,你就可以在R语言中进行KEGG富集分析了。请注意,根据你的具体需求,你可能还需要进行一些参数的调整和结果的解释。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [R语言clusProfiler进行GO与KEGG富集分析](https://blog.csdn.net/Joey_Liu666/article/details/124988292)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [生信分析论文套路R语言代码](https://download.csdn.net/download/thtfhtfhvyyy/87244940)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值