coursera—Mini-project #5—Memory

这是一个来自 The Rice的课程 An Introduction to Interactive Programming in Python (Part 2)的记忆力翻纸牌游戏,废话不多说,直接上代码。

源代码

# implementation of card game - Memory

import simplegui
import random
# helper function to initialize globals
def new_game():
    global new_lis, state, exposed, turn
    turn = 0
    exposed = [False] * 16
    state = 0
    new_lis = range(0, 8) + range(0, 8)
    random.shuffle(new_lis)
     
# define event handlers
def mouseclick(pos):
    # add game state logic here
    global exposed, state, pos1, pos2, turn, tex  
    if exposed[pos[0]//50] == False:
        if state == 0:
            state = 1
            turn = 1
            pos1 = pos[0]//50
            exposed[pos1] = True      
        elif state == 1:
            state = 2
            pos2 = pos[0]//50
            exposed[pos2] = True
        else:
            state = 1
            turn += 1
            if new_lis[pos1] != new_lis[pos2]:
                exposed[pos1] = False
                exposed[pos2] = False
            pos1 = pos[0]//50
            exposed[pos1] = True    
        label.set_text('Turns = ' + str(turn))
    
# cards are logically 50x100 pixels in size    
def draw(canvas):
    for i in range(len(new_lis)):
        canvas.draw_text(str(new_lis[i]), (15+50*i, 65), 40, 'Black')
    for j in range(len(new_lis)): 
        canvas.draw_polygon([[50*j, 0], [50*j, 100], [50*j+50, 100],[50*j+50, 0]],  2, 'Black')
        if not exposed[j]:
            canvas.draw_polygon([[50*j, 0], [50*j, 100], [50*j+50, 100],[50*j+50, 0]],  2, 'Black', 'Green')


# create frame and add a button and labels
frame = simplegui.create_frame("Memory", 800, 100)
frame.add_button("Reset", new_game)
label = frame.add_label('Turns = 0')

# register event handlers
frame.set_mouseclick_handler(mouseclick)
frame.set_draw_handler(draw)
frame.set_canvas_background('White')

# get things rolling
new_game()
frame.start() 

# Always remember to review the grading rubric

运行结果示例
在这里插入图片描述

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值