未穿工作服检测报警系统依据计算机视觉+边缘计算分析,未穿工作服检测报警系统实时分析和识别监控画面信息。不用手动操作,未穿工作服检测报警系统会对作业现场24小时不间断监测。当未穿工作服检测报警系统检测到工人没有穿工作服时,给予预警提醒,合理协助后台人员最大程度地降低漏报,减少人力成本。

近年来,实时目标检测器仍在针对不同的边缘设备进行开发。例如,MCUNet 和 NanoDet 的开发专注于生产低功耗单芯片并提高边缘 CPU 的推理速度;YOLOX、YOLOR 等方法专注于提高各种 GPU 的推理速度;实时目标检测器的发展集中在高效架构的设计上;在 CPU 上使用的实时目标检测器的设计主要基于 MobileNet、ShuffleNet 或 GhostNet;为 GPU 开发的实时目标检测器则大多使用 ResNet、DarkNet 或 DLA,并使用 CSPNet 策略来优化架构。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

未穿工作服检测报警系统 YOLOv7_计算机视觉

未穿工作服检测报警系统能够即时检测现场人员是不是按规定穿戴工作服。当未穿工作服检测报警系统检测到有人员违反规定时,未穿工作服检测报警系统立即抓拍存档、预警提醒,人员违规数据通过5G或网络专线传送到后台,相关人员可以在第一时间接到预警提醒,有利于快速处理。

# From Mr. Dinosaur
 
import os
 
 
def listdir(path, list_name):  # 传入存储的list
    for file in os.listdir(path):
        file_path = os.path.join(path, file)
        if os.path.isdir(file_path):
            listdir(file_path, list_name)
        else:
            list_name.append(file_path)
 
 
list_name = []
path = 'D:/PythonProject/data/'  # 文件夹路径
listdir(path, list_name)
print(list_name)
 
with open('./list.txt', 'w') as f:  # 要存入的txt
    write = ''
    for i in list_name:
        write = write + str(i) + '\n'
    f.write(write)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.

未穿工作服检测报警系统自动监测人员工作服穿戴情况,一旦检测到工人没有穿工作服,会自动发出声响,提早采取处理措施,严苛查验,清除萌芽的安全隐患。未穿工作服检测报警系统,可用及时预警提醒,高效率监控,减少后台人力成本,未穿工作服检测报警系统可以7×24小时实时分析;提升安全效率,降低因解决出现异常安全事故落实不到位而导致的损失。