幂级数和函数经典例题_复变函数学习笔记(4)——最大模原理

参考资料: Polya,Szego数学分析中的问题与定理在复变函数部分的习题122、134、135、138,以及廖良文的复分析基础的引理4.3.1和定理4.3.7、习题4.14,4.17, 以及Stein复分析的习题1.13.

引理1

上的解析函数, 则

证明:

处理
, 展开后用幂级数乘法比较系数即可.

定理2

是圆盘
内的解析函数,
在圆周
上的最大模, 则
.

证明: 注意到

在圆周上, 利用引理1以及Taylor公式, 得

所以

, 等号成立当且仅当
为常数.

引理3 如果函数

在区域
内解析, 且
内为常数, 则
内为常数.

证明:

, 则
, 分别对
分量求偏导数, 用Cauchy-Riemann方程即可.

引理4

在区域
内解析, 若
内的一个圆盘
内恒等于0, 那么
内恒等于0.

证明: 只需证任意一点

, 都有
. 用完全位于
内的曲线
连接
, 在
上取点
, 其中(保证点在$D$内)

邻域
, 则有

下面我们说明在每个

邻域都恒等于0. 我们还是用Taylor展开来证.

由于

, 则

又由

, 那么
,
的Taylor展开式系数也为0, 自然

这样推下去即可以证

.

定理5

在区域
内解析, 若
内的某一点
取到它的最大模, 则
内恒等于一实数.

证明: 设

, 则已证完; 设
, 取
使得圆盘
, 则由Cauchy积分公式得

所以

然而

, 我们说明这个不等式的小于号不成立: 若存在
使得

的连续性知, 存在
使当
时,
成立, 记

(上面在E上的积分估计是可以取"="的)

矛盾, 因此只能有

,

根据

的任意性, 对任意
都有
,

从而

. 利用引理3,
常数. 再用引理4可以由圆盘拓展到整个区域
内.

定理6(最大模原理)

在区域
内解析, 在闭区域
上连续,
. 除非
不恒为常数, 否则在
内部每一点
都有
.

证明: 按照定理5, 如果在

内有一个点
使得
, 则
常数.

或者按照定理2, 不等式

等号成立当且仅当
常数.

下面给出一些例题:

例1(最小模原理)

在有界开区域
内解析且非零, 在闭区域
上连续, 则
上取最小值.

证明: 用定理6, 注意

是解析的, 证完.

例2

是一整函数, 并且不等式

对所有

都成立, 证明:
.

证明: 由于

是整函数,, 则在
内都有Taylor展式

利用Cauchy积分公式,

从而

, 令
可得
, 从而
. 再利用

同样可证

, 同理
. 下面看
的情况:

所以

的Taylor级数的各项均为0, 从而
.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值