下面的定理是解析函数论中极有用的定理之一.
定理 4.24 (最大模原理)
设函数 f ( z ) f(z) f(z) 在区域 D D D 内解析, 则 ∣ f ( z ) ∣ |f(z)| ∣f(z)∣ 在 D D D 内任何点都不能达到最大值,除非在 D D D 内 f ( z ) f(z) f(z) 恒等于常数.
证
如果用 M M M 表示 ∣ f ( z ) ∣ |f(z)| ∣f(z)∣ 在 D D D 内的最小上界, 则必 0 < M < + ∞ 0<M<+\infty 0<M<+∞. 假定在 D D D 内有一点 z 0 z_{0} z0, 函数 f ( z ) f(z) f(z) 的模在 z 0 z_{0} z0 达到它的最大值, 即 ∣ f ( z 0 ) ∣ = M \left|f\left(z_{0}\right)\right|=M ∣f(z0)∣=M.
(1) 应用平均值定理 (定理 3.12) 于以 z 0 z_{0} z0 为圆心,并且连同它的周界一起都全含于区域 D D D 内的一个圆 ∣ z − z 0 ∣ < R \left|z-z_{0}\right|<R ∣z−z0∣<R, 就得到
f ( z 0 ) = 1 2 π ∫ 0 2 π f ( z 0 + R e i φ ) d φ . f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+R \mathrm{e}^{i \varphi}\right) \mathrm{d} \varphi . f(z