复变函数论4-解析函数的幂级数表示法4-4-解析函数最大模原理1:最大模原理【设函数f(z)在区域D内解析,则│f(z)│在D内任何点都不能达到最大值,除非在D内f(z)恒等于常数】

本文详细介绍了复变函数论中的最大模原理,即解析函数在区域内除常数外不能达到最大模。通过证明过程展示了若函数在某点达到最大值,则在该点周围的小圆周上函数值恒等于最大值,进而推导出函数在该区域内为常数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面的定理是解析函数论中极有用的定理之一.

定理 4.24 (最大模原理)

设函数 f ( z ) f(z) f(z) 在区域 D D D 内解析, 则 ∣ f ( z ) ∣ |f(z)| f(z) D D D 内任何点都不能达到最大值,除非在 D D D f ( z ) f(z) f(z) 恒等于常数.


如果用 M M M 表示 ∣ f ( z ) ∣ |f(z)| f(z) D D D 内的最小上界, 则必 0 < M < + ∞ 0<M<+\infty 0<M<+. 假定在 D D D 内有一点 z 0 z_{0} z0, 函数 f ( z ) f(z) f(z) 的模在 z 0 z_{0} z0 达到它的最大值, 即 ∣ f ( z 0 ) ∣ = M \left|f\left(z_{0}\right)\right|=M f(z0)=M.

(1) 应用平均值定理 (定理 3.12) 于以 z 0 z_{0} z0 为圆心,并且连同它的周界一起都全含于区域 D D D 内的一个圆 ∣ z − z 0 ∣ < R \left|z-z_{0}\right|<R zz0<R, 就得到

f ( z 0 ) = 1 2 π ∫ 0 2 π f ( z 0 + R e i φ ) d φ . f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+R \mathrm{e}^{i \varphi}\right) \mathrm{d} \varphi . f(z

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于工业控制、物联网备等领域。本资料包主要提供了STM32F103在实现RS485通信及Modbus RTU协议的主机和从机式下的源代码实例,帮助开发者快速理解和应用这一通讯技术。 RS485是一种物理层通信标准,用于构建多数据通信网络,具有传输距离远、抗干扰能力强的特。它采用差分信号传输方式,可以实现双向通信,适合于长距离的工业环境。在RS485网络中,通常有一个主机(Master)和一个或多个从机(Slave),主机负责发起通信,从机响应主机的请求。 Modbus RTU(Remote Terminal Unit)是一种常用的过程控制工业通信协议,基于ASCII或RTU(远程终端单元)报文格式,常用于PLC(可编程逻辑控制器)和嵌入式系统之间的通信。Modbus RTU使用串行通信接口,如RS485,以减少布线成本和提高通信效率。 在STM32F103上实现RS485 Modbus RTU通信,首先需要配置GPIO口作为RS485的硬件接口,包括数据线(一般为RX和TX)和方向控制线(DE和RE)。DE线用于控制发送数据时的数据线方向,RE线则用于接收数据时的方向。这些置可以通过STM32的HAL库或LL库进行编程。 接着,你需要编写Modbus RTU协议栈的实现,这包括解析和构造Modbus报文、错误检测与处理、超时管理等。Modbus RTU报文由功能码、地址、数据和CRC校验码组成。主机向从机发送请求报文,从机会根据接收到的功能码执行相应的操作,并返回响应报文。 在主机端,你需要实现发送请求和接收响应的函数,以及解析从机返回的数据。在从机端,你需要监听串口,解析接收到的请求,执行相应的功能并构造响应报文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值