球谐函数

1623 篇文章 23 订阅
1277 篇文章 12 订阅

知乎用户,Bite My Shiny Metal Ass!

定义
\vec L = -i \vec r \times \nabla为角动量算符(微分算符),球谐函数是角动量算符的本征函数:

\begin{split}\vec L^2 Y_\ell^m (\theta,\varphi) &= \ell (\ell +1)Y_\ell^m (\theta,\varphi) \\L_zY_\ell^m (\theta,\varphi) &= mY_\ell^m (\theta,\varphi) \end{split}

在球坐标下, \vec L^2 = -\frac{1}{\sin\theta}\frac{\partial}{\partial\theta} - \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial \varphi^2}, L_z = -i \frac{\partial}{\partial \varphi}
可以使用分离变量法这两个方程 :  Y_\ell^m(\theta,\varphi) = \Theta(\theta)\Phi(\varphi)

\begin{split}&\frac{1}{\Phi(\varphi)} \frac{d^2 \Phi(\varphi)}{d\varphi^2} = -\mu^2 \\&\frac{1}{\Theta(\theta)\sin\theta} \frac{d}{d\theta} \left [ \sin\theta \frac{d\Theta}{d\theta} \right ] - \frac{\mu^2}{\sin^2\theta}= \ell(\ell+1)\\&\frac{1}{\Phi(\varphi)}\frac{d}{d\varphi}\Phi(\varphi) = i m  \end{split}
显然容易得到, \mu = m。 

作为角动量算符的本征函数,球谐函数具有良好的 转动性质(另见:CG系数)。

函数形式
Y_\ell^m(\theta,\ \varphi) =(i)^{m+|m|} \sqrt{​{(2\ell+1)\over 4\pi}{(\ell - |m|)!\over (\ell+|m|)!}}  \, P_\ell^m (\cos{\theta}) \, e^{im\varphi} 这里 P_{\ell}^m(x)是勒让德多项式, P_\ell(x) = {1 \over 2^\ell \ell!} {d^\ell\over dx^\ell }(x^2 - 1)^\ell
正交完备性
\int_{0}^\pi d\theta\int_{0}^{2\pi}d\varphi Y_\ell^m \, Y_{\ell'}^{m'*} \, d\Omega=\delta_{\ell\ell'}\, \delta_{mm'}
\sum_{\ell=-\infty}^\infty\sum_{m=-\ell}^\ell Y_\ell^m(\theta,\varphi){Y_\ell^{m}}^*(\theta',\varphi') \xrightarrow{L^2} \delta(\cos\theta-\cos\theta')\delta(\varphi-\varphi')

因此球谐函数可以作为一组正交完备基,展开任意“性质良好”的函数 f(\theta, \varphi)
f(\theta, \varphi) = \sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell f_{\ell m} \, Y_{\ell m}(\theta, \varphi).

图形
3D 图(球坐标): r = Y_\ell^m(\theta,\phi)

2D密度图:

应用
应用在拉普拉斯算符——散度:
\nabla^2 f = {1 \over r^2}{\partial \over \partial r}\left(r^2 {\partial f \over \partial r}\right)   + {1 \over r^2\sin\theta}{\partial \over \partial \theta}\left(\sin\theta {\partial f \over \partial \theta}\right)   + {1 \over r^2\sin^2\theta}{\partial^2 f \over \partial \varphi^2} \equiv {1 \over r^2}{\partial \over \partial r}\left(r^2 {\partial f \over \partial r}\right)  + \frac{\vec L^2}{r^2}
这是因为散度算符是没有方向的。拉普拉斯方程、赫姆霍滋的解可以写成:
f(\bm r) = \sum_n \sum_{\ell = 0}^{\infty}\sum_{m=-\ell}^{+\ell} R_{n\ell m}(r) Y_{\ell}^m(\theta, \varphi)

应用在多极展开:
\frac{1}{|\bm r - \bm r'|}= \sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}  \frac{4\pi}{2\ell+1} \frac{r_<^\ell}{r_>^{\ell+1}}Y_{\ell m}(\theta, \phi)  Y_{\ell m}^{*}(\theta^{\prime}, \phi^{\prime}), 其中 \bm r = (r, \theta, \varphi)\bm r' = (r', \theta', \varphi')是极坐标, r_< = \min\{r, r'\}, r_> = \max\{r, r'\}

实际上,该函数是非齐次拉普拉斯方程,  \nabla^2 \frac{1}{|\bm r - \bm r'|} = 4\pi\delta^{3}(\bm r - \bm r'),在自由边界条件下的解。自由边界条件下任意非齐次拉普拉斯方程的解都可以由此构造出来,这就是所谓的 库仑定律
  • 若函数\phi(\bm r)满足:\nabla^2 \phi(\bm r) = 4\pi \rho(\bm r)\rho(\bm r)是个性质良好的已知函数。则,
\phi(\bm r) = \int \mathrm d^3 r' \frac{\rho(\bm r')}{|\bm r - \bm r'|}.


应用在量子力学 —— 氢原子波函数、分子轨道等:如氢原子的薛定谔方程可以写作:
\bigg( -\frac{\hbar^2}{2m} \nabla^2 - \frac{k e^2}{r} \bigg)\psi =  E \psi
其中含有拉普拉斯算符,因此氢原子的波函数可以写作:
\psi(\bm r) = \sum_n \sum_{\ell = 0}^{\infty}\sum_{m=-\ell}^{+\ell} R_{n\ell m}(r) Y_{\ell}^m(\theta, \varphi) \equiv \sum_{n,m,\ell} \psi_{nm\ell}(\bm r)
其中 \psi_{nm\ell}(\bm r) = R_{nm\ell}(r) Y_\ell^m(\theta, \varphi) 是其本征态分类。
  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值