方差公式初三_初中数学方差知识点

方差是衡量数据波动大小的统计量,公式为s^2=(1/n)[(x1-x_)^2+...+(xn-x_)^2],其中x_是样本平均数。在样本方差的计算中,使用(1/(n-1))的修正公式以获得无偏估计。标准差是方差的算术平方根,同样反映数据的离散程度。方差和标准差越大,数据的波动和不稳定性也越大。在数学期望存在时,方差D(X)=E{[X-E(X)]^2},而D(X)=0意味着X几乎必然取常数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

初中数学方差知识点

方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。 在实际计算中,我们用以下公式计算方差。

即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,xn表示个体,而s^2就表示方差。

而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的.方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。

方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

定义 设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。

即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。

方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差.方差越大,离散程度越大。否则,反之)

若X的取值比较集中,则方差D(X)较小

若X的取值比较分散,则方差D(X)较大。

因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。

计算

由定义知,方差是随机变量 X 的函数

g(X)=∑[X-E(X)]^2 pi

数学期望。即:

由方差的定义可以得到以下常用计算公式:

D(X)=∑xipi-E(x)

D(X)=∑(xipi+E(X)pi-2xipiE(X))

=∑xipi+∑E(X)pi-2E(X)∑xipi

=∑xipi+E(X)-2E(X)

=∑xipi-E(x)

方差其实就是标准差的平方。

几个重要性质

(1)设c是常数,则D(c)=0。

(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。

(3)设 X 与 Y 是两个随机变量,则

D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}

特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),

则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。

(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。

(5)D(aX+bY)=a^2DX+b^2DY+2abE{[X-E(X)][Y-E(Y)]}。

很多时候我们分析的时候更多的使用的是标准差。

【初中数学方差知识点】相关文章:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值