halcon获取图像中心点_上位机通过halcon中图像区域特征选择指定区域

在图像处理中,预处理后通常需要根据特定特征选择区域。本文介绍了如何在Halcon中利用region_features和select_shape函数获取和利用区域特征,如中心点坐标、圆度和矩形度等,以实现对图像中感兴趣区域的选择。通过对37种区域特征的理解和应用,可以有效地进行区域选择,例如挑选出特定形状或尺寸的区域。
摘要由CSDN通过智能技术生成

在图像处理当中对图像进行预处理,获得感兴趣的区域,可以提高图像处理的速度;

当我们想要提取Region时,图像简单处理后,往往存在几个类似的Region,此时,需要根据Region的一些特殊特征,来选择指定的Region。

在halcon 中 求Region指定特征值:region_features(Regions : : Features : Value)

然后就可以根据获取的特征值选择区域:select_shape(Regions: SelectedRegions : Features, Operation, Min, Max : )

图像区域特征众多,对每个特征的理解,是使用前面两个函数的前提。下面表格罗列出的区域特征说明

Region特征一览:特征英译取值范围

AreaArea of the object区域的面积,可通过area_center得到

RowRow index of the center中心点的行坐标,可通过area_center得到

columnColumn index of the center中心点的列坐标,可通过area_center得到

widthWidth of the region区域的宽度,参考inner_rectangle1,得到的参数

heightHeight of the region区域的高度,参考inner_rectangle1,得到的参数

row1Row index of upper left corner左上角行坐标,参考inner_rectangle1,得到的参数

column1Column index of upper left corner左上角列坐标,参考inner_rectangle1,得到的参数

row2Row index of lower right corner右下角行坐标,参考inner_rectangle1,得到的参数

column2Column index of lower right corner右下角列坐标,参考inner_rectangle1,得到的参数

circularityCircularity圆度,可通过circularity得到0~1

compactnessCompactness紧密度,可通过compactness得到0~1

contlengthTotal length of contour轮廓线总长,可通过contlength得到

convexityConvexity凸度,最外全部像素点围成的面积与原始面积的比值,可百度查阅凸度概念,可通过convexity得到

rectangularityRectangularity矩形度,可通过rectangularity得到0~1

RaMain radius of the equivalent ellipse等效椭圆长轴半径长度,通过elliptic_axis得到

RbSecondary radius of the equivalent ellipse等效椭圆短轴半径长度,通过elliptic_axis得到

PhiOrientation of the

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值