将三角形绕点b顺时针旋转90度_【专题突破】图形旋转与翻折典型例题解析

本文深入探讨了图形旋转与翻折的四种题型,包括旋转与等腰三角形、旋转与直角三角形、旋转与相似三角形、翻折与相似三角形。通过具体的中考题目,解析了30°、一线三垂直、勾股定理等关键概念,并提供了详细的解题方法和图示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3efdc0f2dc704bf4a9ac96ec03a307eb.gif

63e5fa1c2847ce84d58dcf67a6063ee6.png

来源:数学密码142857

本文主要介绍旋转与翻折的四大题型,旋转与等腰三角形、旋转与相似三角形、旋转与直角三角形、翻折与相似三角形,涉及到30°、一线三垂直、勾股大法、8字型、鸡爪型、半角模型、参数大法、分类讨论等等,并通过具体例题加以分析,文章行文框架如下:

ccb7a0fd049f6a20b054ac449f823058.png

正文如下,敬请赏析:

01

旋转与翻折

旋转与等腰三角形

先从最简单的题型说起,图形的旋转会产生等腰三角形,那么问题就会以这个以旋转中心为顶点的等腰三角形做文章。例如【2017徐汇区二模第18题】

如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子________.  

3aa10980df2912f922064b72e8bf4595.png

下面用图示来看看这道题的解法吧

22dae667cdc32b947828ea738fe32543.png

6250a4c5b44823fb9d87c8075e99d154.png

是不是秒懂啊?

再来一题【2015奉贤区二模第18题】

如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC绕着点O顺时针旋转,点C落在BC边上的点C′处,点A落在点A′处,联结BA′,如果点A、C、A′在同一直线上,那么∠BA′C′的度数为________ 

d6f7b5f40aca4f3a1da7adeb5aa99f26.png

继续用图示,看好啰

f1b9994d57a9b3e45be8e02fcc2b23d3.png

06e8b8cb6123e831f430315c0be99d36.png

1d80f1e96a01fb952a92f5acefc3242f.png

【2016崇明县第18题】

如图,在Rt△ABC中,∠ABC=90°,AB=BC

### 实现图像顺时针旋转90的方法 可以采用多种方法来实现图像的顺时针旋转90操作,在Python中有不同的库可以帮助完成这一任务,下面介绍两种常用的方式。 #### 使用PIL库处理图像 对于实际存储在磁盘上的图像文件,可以通过`PIL`(即`Pillow`)库来进行加载、旋转以及保存的操作。这里给出一段具体的代码示例: ```python from PIL import Image def rotate_image(input_image_path, output_image_path): img = Image.open(input_image_path) rotated_img = img.rotate(-90, expand=True) # 设置expand参数为True以适应新的尺寸 rotated_img.save(output_image_path) img.close() ``` 此函数接收两个路径作为参数:一个是待处理图片的位置,另一个是指定保存位置;通过调用该函数即可轻松地让指定图片逆时针方向转动270,也就是顺时针旋转90[^1]。 #### 利用NumPy数组表示矩阵并进行变换 如果目标是对内存中的数据结构比如列表或numpy数组形式存在的图像执行同样的转换,则可以直接操纵这些数值型的数据集。考虑到效率问题,通常会借助于`numpy`这样的高效计算工具包。具体做法如下所示: 假设有一个n×n大小的二维整数矩阵代表一幅黑白位图,为了将其顺时针旋转90,可以先沿主对角线再反转每一行得到最终的结果。以下是基于这个思路编写的算法实现: ```python import numpy as np def rotate_matrix_inplace(matrix): n = len(matrix) for layer in range(n // 2): first, last = layer, n - layer - 1 for i in range(first, last): offset = i - first top = matrix[first][i] # save top element # move left to top matrix[first][i] = matrix[last-offset][first] # move bottom to left matrix[last-offset][first] = matrix[last][last-offset] # move right to bottom matrix[last][last-offset] = matrix[i][last] # assign top to right matrix[i][last] = top return matrix.tolist() # 测试案例 test_matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] rotated_result = rotate_matrix_inplace(test_matrix) print(rotated_result) ``` 这段程序实现了不额外占用空间的情况下完成了原地旋转的功能,并且保持了原始输入不变的要求[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值