求列向量的一范数_谈谈向量在曲面上的平行移动 (2) —— Berry 联络、Berry 相位与 Hall 电导率...

在上一篇文章

谈谈向量在曲面上的平行移动 (1) —— 平行移动与测地线​zhuanlan.zhihu.com

中讨论了将平面内平行移动一个向量推广到如何在曲面上平行移动一个向量的方法,以及得到了测地线方程。这篇文章主要讨论一下平行移动这个概念应用到凝聚态物理中的一个例子,就是 Berry 联络、Berry 曲率和陈数。从事凝聚态物理研究的人们大部分会对这些名词很熟悉,至少会很耳熟。因为量子整数霍尔效应(QHE),反常霍尔效应(AHE)都与这些概念紧密相连。2016 年的 Nobel 奖就是颁给 Thouless、Kosterlitz 与 Haldane,以奖励他们对拓扑相变的开创性贡献。

首先,我们对向量做一个新的认识。在上一篇文章中,我们操作的对象是我们所熟知的向量。它是一个有大小,有方向的一个量。设

是一组基向量,我们对其定义了

加法

数乘

内积(点乘)

距离

的运算,在此基础上又赋予了微积分的操作。向量和这些封闭运算构成了一个赋范向量空间。这里的“范”是范数的含义,指的是可以在这个空间中定义距离既范数的概念。内积自然给出了距离的概念。如果读者熟悉量子力学,就知道在量子力学里有一套符号 —— Dirac 符号

。它代表了粒子运动的波函数。设
是某一力学量的本征波函数,同样地,我们也可以定义

加法

数乘

内积

"距离"

的运算。可以看到,从对元素的操作上看,它与上面的赋范向量空间没有什么区别。因此,函数空间也是一个赋范向量空间,专业地称为 Hilbert 空间,Dirac 符号

也形象地称为 Hilbert 空间中的态矢。由此,我们可以想到,对我们熟知的向量微积分的一些结论也应当可以移植到函数空间中,如上一篇文章写到的平行移动。那么接下来我们看看这个概念如何运用到量子力学中。

对于具有平移对称性的二维晶格,它的本征方程可以写作

(1)

参数

代表了平移算符
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值