Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 2019 Mar;567(7747):249-252.
看到这篇实验文章 [ PMID:30842658],它里面用到了mRNA-seq技术:We next performed mRNA sequencing on RNA isolated from the livers of control and KPC mice.
We identified 275 differentially expressed genes, and found that genes upregulated in KPC mice were associated with immune-related processes.
但是我看了看文章的方法部分,并没有介绍linux环境或者R数据处理,只有纯粹的软件工具。
文章用到的数据公布在 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109480 :
提供表达矩阵下载:
下载文件,其实我们会R的话,就可以进入R处理它们:
rm(list = ls())
options(stringsAsFactors = F)
setwd('files/')
el=lapply(list.files(pattern = '*.gz'),function(x){
read.table(x,header = T,row.names = 1)[,9,drop=FALSE]
})
lapply(el, head)
exprSet=do.call(cbind,el)
colnames(exprSet)=paste0(c('control','KPC'),c(1:5,1:5))
# The reads per 1k bases of exon model per million mapped reads.
# (http://www.nature.com/nmeth/journal/v5/n7/abs/nmeth.1226.html)差异分析后的热图
功能富集及注释
chemoattractant相关基因集的表达量分布
GSEA分析挑选感兴趣通路Enrichment of IL-6–JAK–STAT3 signalling genes in the liver (n = 5 for control mice and NTB KPC mice).
写在后面
真正的粉丝看到这样的标题肯定会以为我们公众号被盗了,居然不推荐一个纯正的生信工程师学linux,开什么国际玩笑!
是的,本文并没有劝退大家离开linux的意思,相反,我会极力推广:
视频都在B站:
其实吧,如果只是为了获得表达矩阵,那当然,linux不重要,可是,表达矩阵只不过是转录组数据分析的冰山一角:
会linux,你的数据有无限的可能!
明天,我们会系统性的整理linux学习路线,前面我更新了针对生信工程师R语言入门指南,见:生信分析人员如何系统入门R(2019更新版) ,广受好评,反响热烈,趁热打铁我应该把剩余的3个知识点也认真系统更新一下,恰好今天授课讲解的就是linux学习路线图!
敬请期待哦!