赛题与数据介绍
给定查询和用户信息后预测广告点击率 搜索广告是近年来互联网的主流营收来源之一。在搜索广告背后,一个关键技术就是点击率预测-----pCTR(predict the click-through rate),由于搜索广告背后的经济模型(economic model )需要pCTR的值来对广告排名及对点击定价。本次比赛提供的训练实例源于腾讯搜索引擎的会话日志(sessions logs), soso.com,要求参赛者精准预测测试实例中的广告点击率。 训练数据文件TRAINING DATA FILE 训练数据文件是一个文本文件,里面的每一行都是一个训练实例(源于搜索会话日志消息)。 为了理解训练数据,下面先来看看搜索会话的描述。搜索会话是用户和搜索引擎间的交互,它由这几部分构成: 用户,用户发起的查询,一些搜索引擎返回并展示给用户的广告,用户点击过的0条或多条广告。为了更清楚地理解搜索会话,这里先介绍下术语:在一个会话中展示的广告数量被称为深度(depth), 广告在展示列表中的序号称为广告的位置(position)。广告在展示时,会展示为一条短的文本,称之为标题(title),标题后跟着一条略长些的文本和一个URL,分别叫做描述(description)和展示链接(display URL)。 我们将每个会话划分为多个实例。每个实例描述在一种特定设置(比如:具有一定深度及位置值)下展示的一条广告。为了减少数据集的大小,我们利用一致的user id, ad id, query来整理实例。因此,每个实例至少包含如下信息: UserID AdID Query Depth Position Impression 搜索会话的数量,在搜索会话中广告(AdID)展示给了发起查询(query)的用户(UserID)。 Click 在上述展示中,用户(UserID)点击广告(AdID)的次数。 此外, 训练数据,验证数据及测试数据包含了更多的信息。原因是每条广告及每个用户拥有一些额外的属性。我们将一部分额外的属性包含进了训练实例,验证实例及测试实例中,并将其他属性放到了单独的数据文件中, 这些数据文件可以利用实例中的ids来编排索引。如果想对这类数据文件了解更多,请参考ADDITIONAL DATA FILES部分。 最后,在包括了额外特征之后,每个训练实例是一行数据(如下),这行数据中的字段由TAB字符分割: 1. Click: 前文已描述。 2. DisplayURL:广告的一个属性。 该URL与广告的title(标题)及description(描述)一起展示,通常是广告落地页的短链(shortened url)。 在数据文件中存放了该URL的hash值。 3. AdID: 前文已描述。 4. AdvertiserID : 广告的属性。 一些广告商会持续优化其广告,因此相比其他的广告商,他们的广告标题和描述会更具魅力。 5. Depth:会话的属性,前文已描述。 6. Position: 会话中广告的属性,前文已描述。 7. QueryID: 查询的id。 该id是从0开始的整数。它是数据文件'queryid_tokensid.txt'的key。 8.KeywordID : 广告的属性。 这是 'purchasedkeyword_tokensid.txt'的key。 9.TitleID: 广告的属性。 这是 'titleid_tokensid.txt'的key。 10.DescriptionID:广告的属性。 这是'descriptionid_tokensid.txt'的key。 11. UserID 这是 'userid_profile.txt'的key。当我们无法确定一个用户时,UserID为0。 附加的数据文件ADDITIONAL DATA FILES 这里还有前面提到过的5个附加的数据文件: 1. queryid_tokensid.txt 2. purchasedkeywordid_tokensid.txt 3. titleid_tokensid.txt 4. descriptionid_tokensid.txt 5. userid_profile.txt 前4个文件每一行将id映射为一个记号列表,在query(查询), keyword(关键字), ad title(广告标题)及ad description(广告描述)中都是如此。 在每一行中,TAB字符将id及其他记号集分隔开。一个记号最基本可以是自然语言中的一个词。为了匿名,每个记号以hash后的值来表示。 字段以 ‘|’分割。 ‘userid_profile.txt’ 文件的每一行由UserID, Gender, 和 Age组成,用TAB字符来分隔。注意,并非训练集和测试集中的每个UserID都会出现在‘userid_profile.txt’文件中。每个字段描述如下: 1. Gender: '1' for male(男), '2' for female(女), and '0' for unknown(未知). 2. Age: '1' for (0, 12], '2' for (12, 18], '3' for (18, 24], '4' for (24, 30], '5' for (30, 40], and '6' for greater than 40(6代表大于40). TESTING DATASET(测试数据集) 除了广告展示及广告点击的数量不同外,测试数据集与训练数据集的格式一致。 广告展示及广告点击次数用于计算先验的点击率(empirical CTR)。 训练集的子集用于在leaderboard上对提交或更新的结果进行排名。测试集用于选举最终冠军。用于生成训练集的日志与之前生成训练集的日志相同。
0,CTR预估的流程:
数据-》预处理数据-》特征抽取-》模型训练-》后处理。
特征决定了达到好的评价指标的天花板,好的模型决定了到达这个天花板的能力。所以,特征的处理是非常重要的。
1.join
特征在预处理的时候要进行相关信息组合 Linux的join相关:(注意sort a > a没有-o会清空内容.应该用sort a -o a)
http://www.runoob.com/linux/linux-comm-join.html
http://www.cnblogs.com/51linux/archive/2012/05/23/2515299.html
join之前要排序。
关于数据集:如果要看某个id好代表什么,都可以去他的id号对应的txt查询:cat queryid_tokensid.txt | awk '$1 == 14092{print $0}' | head
那么,每一次每个样本都还要去txt里面找它对应的信息,就会导致非常繁琐。那么需要这些特征,就可以把他们整合在一起。
这就是数据预处理里面的特征组合:Join:
join的shell命令是:先对两个文件按照他们要join的对象进行排序:然后进行join。这个join的key会被放到文件的第一列。
代码如下:
先sort sort -t $'\t' -k 7,7 train >train_sort sort -t $'\t' -k 1,1 queryid_tokensid.txt > queryid_sort 然后join join -t $'\t' -1 7 -2 1 -a 1 train_sort queryid_sort >train1
join之后看一下多少行,来验证是否join进去了。发现从11列变成了12列。代码如下:
head train | awk '{print NF} 显示11列 head train1 | awk '{print NF}显示12列
写了一个脚本来进行这几部操作,因为key列会跑到第一列,所以做了一下调整。join代码如下:
#! /bin/bash sort -t $'\t' -k "$2,$2" $1 >t1 sort -t $'\t' -k "$4,$4" $3 >t2 join -t $'\t' -1 $2 -2 $4 t1 t2 -a 1|awk -v n=$2 '{ s=$2; for(i=3;i<=n;++i){ s=s"\t"$i } s=s"\t"$1; for(i=n+1;i<=NF;++i){ s=s"\t"$i } print s }' #rm -f t1 t2
使用join.sh对每一个文件进行join,命令如下:
bash join.sh train 7 queryid_tokensid.txt 1 > train1 bash join.sh train1 8 purchasedkeywordid_tokensid.txt 1 > train2 bash join.sh train2 9 titleid_tokensid.txt 1 > train3 bash join.sh train2 10 descriptionid_tokensid.txt 1 > train4 bash join.sh train4 11 userid_profile.txt 1 > train5
2,负样本采样,对负样本进行随机丢弃,代码:
awk 'BEGIN{srand()}{if($1==1)print $0;if($1==0)if(rand() > 0.5)print $0}' train_combined > t 数一下行数: wc -l t wc -l train5
对负样本采样的原因:
在负样本较多的情况下,为了实现更加准确的预测,需要更大的数据集来获得更多的正样本,对负样本进行采样以后,在样本集大小变小的情况下,正样本的比率增大了。
总样本数1亿条左右,其中正样本数100万条,采样之后正负样本比例1:5,也试过1:4,1:6,1:5效果比较好。采样是用hadoop streaming实现的。
3,洗牌一下。把train和validate数据给分出来:
这里的数据把train里面的数据分成7:3的训练数据和验证数据。
数据说明:train是用来调特征的。validate是用来做验证的,也就是把那个train_data所出来的weights来算一下validate。
clear
[s-44@CH-46 mydata2]$ sort -R train_combined > train_shuffle
head -n 700000 train_shuffle > train_data
tail -n 300000 train_shuffle > validate_data
4,特征处理方法:
这里用one hot encoding处理。下面是代码feature_map.py:
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys file = open(sys.argv[1],"r") toWrite = open(sys.argv[2],"w+") #feature_index表示最大的编号,函数的主要目的是产生唯一的id号,方法是前缀+id feature_map={} feature_index=0 def processIdFeature(prefix, id): global feature_map global feature_index str = prefix + "_" + id if str in feature_map: return feature_map[str] else: feature_index = feature_index + 1 feature_map[str] = feature_index return feature_index #这些特征加进去不一定管用,需要自己试验. lis里面存的是他在map里面的值 def extracFeature1(seg): list=[] list.append(processIdFeature("url",seg[1])) list.append(processIdFeature("ad",seg[2])) list.append(processIdFeature("ader",seg[3])) list.append(processIdFeature("depth",seg[4])) list.append(processIdFeature("pos",seg[5])) list.append(processIdFeature("query",seg[6])) list.append(processIdFeature("keyword",seg[7])) list.append(processIdFeature("title",seg[8])) list.append(processIdFeature("desc",seg[9])) list.append(processIdFeature("user",seg[10])) return list def extracFeature2(seg): depth = float(seg[4]) pos = float(seg[5]) id = int (pos*10/depth) return processIdFeature("pos_ratio",str(id)) def extracFeature3(seg): list=[] if(len(seg)>16): str = seg[2] + "_" + seg[15] list.append(processIdFeature("user_gender",str)) return list def toStr(label, list): line=label for i in list: line = line + "\t" +str(i) + ":1"# 这里的str(i)是指把i变成字符串 return line for line in file: seg = line.strip().split("\t") list = extracFeature1(seg) #list.append(extracFeature2(seg)) #list.extend(extracFeature3(seg)) toWrite.write(toStr(seg[0],list)+"\n") toWrite.close
然后执行命令是:
python feature_map.py train_data train_feature
然后对validate_data也做这个处理:
python feature_map.py validate_data validate_feature
5,特征处理完了之后,进行建模预测:
建模代码train.py如下:
#!/usr/bin # -*- coding:utf-8 -*- import random import math alpha = 0.1 iter = 1 l2 = 1 #拉姆达 file =open("train_feature","r") max_index = 0 #拿到一个维度坐标最大值.找出这个map到底有多大,特征向量到底有多长 for f in file : seg = f.strip().split("\t") for st in seg[1:]: #0不要,0是label index = int(st.split(":")[0]) if index > max_index : max_index = index weight = range (max_index+1) for i in range(max_index+1): weight[i]=random.uniform(-0.01,0.01) #初始化成-0.1 到 0.1 for i in range(iter): file = open("train_feature","r") for f in file: seg = f.strip().split("\t") label = int (seg[0]) s = 0.0 for st in seg[1:]: index = int (st.split(":")[0]) #val = float(st.split(":")[1]) s += weight[index] #特征值为1.其实就是一个大特征,出现了的是1,没出现的就是0. # s+=weight[index] p = 1.0/(1 + math.exp(-s)) #上面算出了wt * x。这里算的是sigmoid函数,也就是预测值是多少 #梯度 == 预测值 - label。本来还要 * x的,但是因为x 都为1,所以。 g = p - label #这是算出来了梯度是多少。 for st in seg[1:]: index = int(st.split(":")[0]) weight[index]-=alpha* (g +l2 * weight[index]) # w == w - alpha * (梯度g + 拉姆达l2 * w) #在validate_feature上验证我们的预测效果是怎么样的。 file = open("validate_feature","r") toWrite = open("pctr","w+") #pctr存的是预测出来的结果 代表的是实际是什么,预测出来是什么。 for f in file : seg = f.strip().split("\t") lable = int (seg[0]) s = 0.0 for st in seg[1:]: index = int(st.split(":")[0]) s+= weight[index] p = 1.0 /(1 + math.exp(-s)) s = seg[0] + "," + str(p) + "\n" toWrite.write(s) toWrite.close()
然后进行建模:
python train.py
得到pctr文件:第一列表示validate里面的真实值,第二列表示预测出来的。
6,用auc对测试的结果进行评估:
auc代码如下:
#!/usr/bin/env python import sys def auc(labels,predicted_ctr): i_sorted = sorted(range(len(predicted_ctr)),key = lambda i : predicted_ctr[i],reverse = True) auc_temp = 0.0 tp = 0.0 tp_pre = 0.0 fp = 0.0 fp_pre = 0.0 last_value = predicted_ctr[i_sorted[0]] for i in range(len(labels)): if labels[i_sorted[i]] > 0: tp+=1 else: fp+=1 if last_value != predicted_ctr[i_sorted[i]]: auc_temp += ( tp + tp_pre ) * ( fp - fp_pre) / 2.0 tp_pre = tp fp_pre = fp last_value = predicted_ctr[i_sorted[i]] auc_temp += ( tp + tp_pre ) * ( fp -fp_pre ) / 2.0 return auc_temp / (tp * fp) def evaluate(ids,true_values,predict_values): labels = [] predicted_ctr = [] for i in range(len(ids)): labels.append(int(true_values[i])) predicted_ctr.append(float(predict_values[i])) return auc(labels,predicted_ctr) if __name__ == "__main__": f = open(sys.argv[1],"r") ids = [] true_values = [] predict_values = [] for line in f: seg = line.strip().split(",") ids.append(seg[0]) true_values.append(seg[1]) predict_values.append(seg[2]) print evaluate(ids,true_values,predict_values)
执行:
cat pctr | awk '{print NR "," $0}' > t python auc.py t
这样就得到了auc的结果。
连续型特征:
1.广告的相对位置=(depth - position)/depth,深度和位置,某一个广告的点击次数
2.query,keyword,title,description的各自的数量
3.tf-idf与余弦相似度的计算
对query,keyword,title,description计算tf-idf,文档集就是每个样本这四个文本构成的文档集,每个文本相当于一个文档。并且由此计算两两之间的余弦相似度,这样就由四个特征构造出了六个特征。
关键词选几个我的想法是根据当前词的数量的30%,如果小于1则选1,试了好几个百分比,但是30%是最好的。
(1)使用TF-IDF算法,找出两篇文章的关键词;
(2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);
(3)生成两篇文章各自的词频向量;
(4)计算两个向量的余弦相似度,值越大就表示越相似。
利用GBDT构造特征--针对连续特征
30棵树,每棵树深度为6,可以说是调参调出来的最好的结果,这样就新增了30个特征。
GBDT与LR的融合方式,Facebook的paper有个例子如下图2所示,图中Tree1、Tree2为通过GBDT模型学出来的两颗树,x为一条输入样本,遍历两棵树后,x样本分别落到两颗树的叶子节点上,每个叶子节点对应LR一维特征,那么通过遍历树,就得到了该样本对应的所有LR特征。由于树的每条路径,是通过最小化均方差等方法最终分割出来的有区分性路径,根据该路径得到的特征、特征组合都相对有区分性,效果理论上不会亚于人工经验的处理方式。
图2
GBDT模型的特点,非常适合用来挖掘有效的特征、特征组合。业界不仅GBDT+LR融合有实践,GBDT+FM也有实践,2014 Kaggle CTR竞赛冠军就是使用GBDT+FM,可见,使用GBDT融合其它模型是非常值得尝试的思路[11]。
笔者调研了Facebook、Kaggle竞赛关于GBDT建树的细节,发现两个关键点:采用ensemble决策树而非单颗树;建树采用GBDT而非RF(Random Forests)。解读如下:
1)为什么建树采用ensemble决策树?
一棵树的表达能力很弱,不足以表达多个有区分性的特征组合,多棵树的表达能力更强一些。GBDT每棵树都在学习前面棵树尚存的不足,迭代多少次就会生成多少颗树。按paper以及Kaggle竞赛中的GBDT+LR融合方式,多棵树正好满足LR每条训练样本可以通过GBDT映射成多个特征的需求。
2)为什么建树采用GBDT而非RF?
RF也是多棵树,但从效果上有实践证明不如GBDT。且GBDT前面的树,特征分裂主要体现对多数样本有区分度的特征;后面的树,主要体现的是经过前N颗树,残差仍然较大的少数样本。优先选用在整体上有区分度的特征,再选用针对少数样本有区分度的特征,思路更加合理,这应该也是用GBDT的原因。
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm
https://breezedeus.github.io/2014/11/19/breezedeus-feature-mining-gbdt.html#fn:fbgbdt
l1正则scikit-learn中只能选择liblinear来优化,内部使用了坐标轴下降
l2正则scikit中可以有四种优化方法,选择的是sag(随机平均梯度下降),比sgd收敛速度要快