解决信息分类难题,人工智能大步向前

人类天生就有给信息分类的能力。但这项技能被证明很难用计算机实现。面对一大堆数据,计算机往往不知该从何入手,除非你给它一个指定的结构、层次、或者线性顺序。
但现在,MIT的新研究将给人工智能领域带来爆炸型的突破,MIT的PhD recipient Charles Kemp带领研究出来的模型能帮助计算机像人一样去识别各种数据。这个模型能自动分辨出哪种结构最适合用来组织当前面对的大量数据。

与以往的模型不同,它并不为每次运算指定特定的数据结构。而是运用自己的算法去对数据进行分析,然后选出最适合本次运算的结构。这为大型运算提供了一种很优良的解决方法。
不过这个模型更大的影响在于,从此人工智能或许不再只能处理一些yes or no的问题了。人工智能将能分析环境中的大量数据,并对其做出反应。
当然,这个模型目前还不完善,只能赶上小孩的分析能力。但相信随着该模型得到越来越多的应用与完善,未来的人工智能也必将给我们带来更多惊喜。

转载于:https://www.cnblogs.com/ysjxw/archive/2008/09/02/1281731.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值