如果说,不同的数学对象在特定语境下,有对应相同的性质,那就可以视他们为“同一样东西”。譬如,数与矩阵。
这可不是“行列式是一个数”的意思啊。
从实数说起吧,也即一元数。
对每个实数,都能对应到一个一阶矩阵;它们分别在各自的运算域里有完全相同的性质。有的人会直接把一阶单位阵理解成一个数,其实也不无道理。
若我们星球的智慧生命,最初偏好用表格来进行思考(而非数手指),也许最先通用的“数”就是一阶方阵了。
然后是二元数,也即通常叫的复数。
对复数,首先零元0和单位元1还是对应到通常理解的矩阵零元(二阶零矩阵)和单位元(二阶单位阵)。特别地,虚数单位i对应的二阶方阵是
- i
有了1与i的矩阵表示,就可以构造任意复数的矩阵表示了。任意复数拥有共通的矩阵形式:
- x+iy
然后,轮到四元数,也即哈密顿数。
四元数不构成域,它不可交换;它是非交换的除环——体(skew field)。基于除环的某些特性,它也有矩阵表示。不过这回是四阶矩阵了。
四元数的各单位分量,记作1、i、j、k;其中1和i就是复数里的那俩。这四个单位对应的矩阵依次为
- 1
- i
- j
- k
上面四个四阶矩阵,对应满足四元数单位分量的基本属性
其加减乘除构造的矩阵也拥有某统一形式,对应到每一个四元数与它们的各种运算。如:
- a+bi+cj+dk
然后,自然会想,更往上一层的八元数会不会有这种矩阵形式的表示呢?
很遗憾,是没有的。因为八元数都已经不是环了。