实变函数基本理论及其应用

基本理论

$\bf(Egoroff定理)$设$E$为测度有限的可测集,${f_n}\left( x \right)$为$E$上的可测函数列.

若${f_n}\left( x \right)$在$E$上几乎处处收敛于$f(x)$,则对任给的$\delta  > 0$,存在${E_\delta } \subset E$,使得$m\left( {E\backslash {E_\delta }} \right) < \delta $,且${f_n}\left( x \right)$在$E_\delta $上一致收敛于$f(x)$

方法一  方法二

$\bf(Lebesgue定理)$

设$E$为测度有限的可测集,${f_n}\left( x \right)$为$E$上的可测函数列,若${f_n}\left( x \right)$在$E$上几乎处处收敛于$f(x)$,则${f_n}\left( x \right)$在$E$上依测度收敛于$f(x)$

方法一  方法二

$\bf(Riesz定理)$

设${f_n}\left( x \right)$为$E$上的可测函数列,若${f_n}\left( x \right)$在$E$上依测度收敛于$f(x)$,则存在子列$\left\{ {{f_{{n_i}}}\left( x \right)} \right\}$在$E$上几乎处处收敛于$f(x)$

方法一  方法二

$\bf(Lusin定理)$

设$f\left( x \right)$是可测集$E$上几乎处处有限的可测函数,则对任给$\delta  > 0$,存在闭集$F \subset E$,使得$m\left( {E\backslash F} \right) < \delta $,且$f\left( x \right)$在$F$上连续

方法一  方法二

$\bf(Lebesgue控制收敛定理)$

设${f_n}\left( x \right)$为$E$上的可测函数列,$F(x)$为${f_n}\left( x \right)$的控制函数且可积,若${f_n}\left( x \right)$在$E$上几乎处处收敛于$f(x)$,则$f(x)$在$E$上可积,且\[\mathop {\lim }\limits_{n \to \infty } \int_E {{f_n}\left( x \right)dx}  = \int_E {f\left( x \right)dx} \]

方法一  方法二

$\bf(Levi引理)$设${f_n}\left( x \right)$为$E$上单调递增的非负可测函数列,若${f_n}\left( x \right)$在$E$上几乎处处收敛于$f(x)$,则\[\mathop {\lim }\limits_{n \to \infty } \int_E {{f_n}\left( x \right)dx}  = \int_E {f\left( x \right)dx} \]

方法一  方法二

$\bf(Fatou引理)$设${f_n}\left( x \right)$为$E$上的非负可测函数列,则\[\int_E {\mathop {\lim }\limits_{\overline {n \to \infty } } {f_n}\left( x \right)dx}  \le \mathop {\lim }\limits_{\overline {n \to \infty } } \int_E {{f_n}\left( x \right)dx} \]

方法一  方法二

$\bf()$

应用

$\bf(连续函数逼近可积函数)$设$f$是$\left[ {a,b} \right]$上的可积函数,则对任意的$\varepsilon  > 0$,存在$\left[ {a,b} \right]$上连续函数$\varphi $,使得\[\int_a^b {\left| {f\left( x \right) - \varphi \left( x \right)} \right|dx}  < \varepsilon \]

方法一  方法二

$\bf()$

 

 

 

转载于:https://www.cnblogs.com/ly285714/p/3760157.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值