证明一个特定形式的函数在其三个正根中,两个较小根处的导数之和小于零

假设 M M M Q Q Q是给定的正的常数,然后定义一个函数 f ( r ) f(r) f(r)。这个函数的定义如下:

f ( r ) = 1 − M r 2 + Q r 4 − r 2 , r > 0 f(r) = 1 - \frac{M}{r^2} + \frac{Q}{r^4} - r^2, \quad r > 0 f(r)=1r2M+r4Qr2,r>0

如果 f f f有三个不同的正根 r c > r + > r − > 0 r_c > r_+ > r_- > 0 rc>r+>r>0,证明 f ′ ( r + ) + f ′ ( r − ) < 0 f'(r_+) + f'(r_-) < 0 f(r+)+f(r)<0

其中, f ′ ( r ) f'(r) f(r)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值