假设 M M M和 Q Q Q是给定的正的常数,然后定义一个函数 f ( r ) f(r) f(r)。这个函数的定义如下:
f ( r ) = 1 − M r 2 + Q r 4 − r 2 , r > 0 f(r) = 1 - \frac{M}{r^2} + \frac{Q}{r^4} - r^2, \quad r > 0 f(r)=1−r2M+r4Q−r2,r>0。
如果 f f f有三个不同的正根 r c > r + > r − > 0 r_c > r_+ > r_- > 0 rc>r+>r−>0,证明 f ′ ( r + ) + f ′ ( r − ) < 0 f'(r_+) + f'(r_-) < 0 f′(r+)+f′(r−)<0。
其中, f ′ ( r ) f'(r) f′(r)<