单调有界性证明递推数列的极限存在和有限性

定义序列

a n + 1 = a n + a n 2 n 2 , 0 ≤ a 1 < 1 a_{n+1} = a_n + \frac{a_n^2}{n^2}, \quad 0 \leq a_1 < 1 an+1=an+n2an2,0a1<1

证明这个数列的极限 lim ⁡ n → ∞ a n \lim_{n\to\infty} a_n limnan存在且有限。

证:

1.观察递推关系:

给定的递推关系式为 a n + 1 = a n + a n 2 n 2 a_{n+1}=a_n+\frac{a^2_n}{n^2} an+1=an+n2an2,且初始条件 0 ≤ a 1 < 1 0\leq a_1<1 0a1<1

2.分析增长趋势:

由于 a n + 1 > a n a_{n+1}>a_n an+1>a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值