定义序列
a n + 1 = a n + a n 2 n 2 , 0 ≤ a 1 < 1 a_{n+1} = a_n + \frac{a_n^2}{n^2}, \quad 0 \leq a_1 < 1 an+1=an+n2an2,0≤a1<1。
证明这个数列的极限 lim n → ∞ a n \lim_{n\to\infty} a_n limn→∞an存在且有限。
证:
1.观察递推关系:
给定的递推关系式为 a n + 1 = a n + a n 2 n 2 a_{n+1}=a_n+\frac{a^2_n}{n^2} an+1=an+n2an2,且初始条件 0 ≤ a 1 < 1 0\leq a_1<1 0≤a1<1。
2.分析增长趋势:
由于 a n + 1 > a n a_{n+1}>a_n an+1>a