【NLP】Resources of Coursera-NLP

Written By: stackupdown(jh)

I. Background
This repo is learning notes of the open course **Natural Language Processing** of Dan Jurafsky and Christopher Manning in Coursera.

- Course Videos:
You can watch the videos from youtube or coursera.The link can be reached from https://nlp.stanford.edu/manning/, which is currently [NLP Course in Youtube](https://www.youtube.com/playlist?list=PLoROMvodv4rOFZnDyrlW3-nI7tMLtmiJZ).
- The course slides is as follow:
https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html

II. Resources

The following is some resources for researching NLP. It does not include some newly published resources like SQuAD or

Bert or XLNet.

N-grams

https://books.google.com/ngrams

Sentiment Analysis

http://sentiwordnet.isti.cnr.it/ SentiWordNet assigns to each synset of WordNet three sentiment scores: positivity, negativity, objectivity.

Extracting Relations

DBPedia: 1 billion RDF triples, 385 from English Wikipedia

20 Semantics
Q. What's the comparision between different corpuses?

 

III. Some Papers

A Primer on Neural Network Models for Natural Language Processing
A neural probabilistic language model
Efficient Estimation of Word Representations in Vector Space
Distributed Representations of Words and Phrases and their Compositionality
 

III. Opensource Software/Books

Speech and Language Processing

https://web.stanford.edu/~jurafsky/slp3/ 

nltk

It's written in python and now used mainly for research and teaching.

HanLP

https://github.com/hankcs/HanLP A series of toolkit for Chinese language processing(mainly), which is aimed

at production environment and now used in many opensource projects as a basic component. It is written in Java.

IV. Researchers

Sebstian Ruder (A well-known blog author)

http://ruder.io/

Kimiyoung

http://kimiyoung.github.io/

转载于:https://www.cnblogs.com/wangzming/p/11557897.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值