滑动平均滤波的截止频率与平均点数计算

本文介绍了滑动平均滤波器的概念及其在去除随机噪声中的应用。通过举例说明了如何计算滑动平均值,并探讨了移动平均滤波的时域计算方法和频率特性。讨论了滑动平均滤波器作为低通滤波器的特例,阐述了如何计算其截止频率与平均点数的关系。同时提到了FFT方法在分析滤波器截止频率中的作用。
摘要由CSDN通过智能技术生成

1. 介绍

      滑动平均值滤波可以去除随机噪声。测量中随机噪声的影响,使测量结果不准确,通过多次测量同一数据源,使用多点集合平均的方法得到数据一个比较合理的估计就是滑动平均值滤波。

     

      例如第80采样点的5次平均值滤波:

      Y[80] = 1/5( X[80] + X[81] + X[82] + X[83] + X[84] )

      这个平均值滤波有时间延迟,最明显的若在正弦采样序列上使用移动平均滤波,则会造成过零点会发生偏移。一般在应用中会加以改进,以当前点为中点,左右各N/2点进行移动平均,遇到N为偶数可以在边界点额外乘以0.5系数。

      Y[80] = 1/5( X[78] + X[79] + X[80] + X[81] + X[82] )

      下面是一个简单的实验,在正弦信号上叠加随机噪声,通过移动平均,能够消除测量值上的毛刺。

 

 

2. 时域计算方法

     平均二字意味着各点的权重相同,如果为各点单独计算权重,则为指数加权滤波。

     移动平均计算看似简单,但是却是一个十分耗时的计算,尤其平均点数较多后格外明显。

     Y[N] = 1/M * ( X[1]+X[2]+X3[3] + … X[M-1]  )

      观察计算式,可以发现,每次新测量值相对于上一次的测量值仅2个点不同,丢掉最早的点,累加最新的点,所以能够进行改进。如开头的例子,5点滑动平均滤波。

     Y[80] = 1/5( X[78] + X[79] + X[80] + X[81] + X[82] )

      改进后,点数越多提升越明显:

      Y[80] =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值