算数几何均值不等式,柯西不等式,琴生Jensen不等式

近年来看到这几个概念不少次了,都有点混淆了,稍微总结下吧。

1. 算数几何均值不等式

这种是中学课本中常见的,对于一组非负实数 x1,x2,…,xnx_1, x_2, \dots, x_nx1,x2,,xn,有
x1x2…xnn≤x1+x2+⋯+xnn \sqrt[n]{x_1x_2\dots x_n}\leq \frac{x_1+x_2+\dots+x_n}{n}nx1x2xnnx1+x2++xn
之前我一直把这个当做柯西不等式,其实不是一回事。这个不等式可以用琴声不等式证明(两边取 ln),但貌似不能用柯西不等式证明(没查到)。

广义不等式:

min⁡{x1,…,xn}≤n1x1+⋯+1xn≤x1…xnn≤x1+⋯+xnn≤x1p+…xnpnp≤max⁡{x1,…,xn}\min\{x_1,\dots,x_n\}\leq \frac{n}{\frac{1}{x_1}+\dots+\frac{1}{x_n}}\leq \sqrt[n]{x_1\dots x_n}\leq \frac{x_1+\dots+x_n}{n}\\ \leq \sqrt[p]{\frac{x_1^p+\dots x_n^p}{n}}\leq \max\{x_1,\dots, x_n\}min{x1,,xn}x11++xn1nnx1xnnx1++xnpnx1p+xnpmax{x1,,xn}

2. 柯西不等式

柯西不等式其实是用向量的内积表示的,对于两个向量 u\bf uuv\bf vv
∣⟨u,v⟩∣2≤⟨u,u⟩⋅⟨v,v⟩\bf |\langle u, v\rangle|^2 \leq \langle u, u\rangle \cdot \langle v, v\rangleu,v2u,uv,v

典型的应用是下面的式子:
(ac+bd)2≤(a2+b2)(c2+d2)(ac+bd)^2\leq (a^2+b^2)(c^2+d^2)(ac+bd)2(a2+b2)(c2+d2)

其中,u=(a,b){\bf u}=(a, b)u=(a,b)v=(c,d){\bf v}=(c,d)v=(c,d)

3. 琴生不等式

琴生不等式基于概率论,若 f(x)f(x)f(x)凸函数,则
E(f(x))≥f(E(x))E(f(x))\geq f(E(x))E(f(x))f(E(x))
f(x)f(x)f(x)凹函数,则
E(f(x))≤f(E(x))E(f(x))\leq f(E(x))E(f(x))f(E(x))

凸函数与凹函数的定义可以根据琴生不等式表示。

转载于:https://www.cnblogs.com/robinchen/p/11047506.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值