琴生Jensen不等式,条件期望

1. Jensen 不等式

Jensen 不等式的意义是:函数的期望大于等于期望的函数(该函数必须是凸函数,若为凹函数,则相反),即
E(f(x))≥f(E(x))E(f(x))\geq f(E(x))E(f(x))f(E(x))

或者写成凸函数条件表达式的形式,在这个表达式式中,ttt 相当于 x1x_1x1 的概率, (1−t)(1-t)(1t) 相当于 x2x_2x2 的概率:
tf(x1)+(1−t)f(x2)≥f(tx1+(1−t)x2)t∈{0,1}tf(x_1)+(1-t)f(x_2)\geq f(tx_1+(1-t)x_2)\quad t\in\{0,1\}tf(x1)+(1t)f(x2)f(tx1+(1t)x2)t{0,1}

2. 条件期望

条件期望的表达式,若 X, Y 是两个变量:
E(X∣Y=y)=∫xfX∣Y(x∣y)dx=∫xf(x,y)f(y)dxE(X\mid Y=y) = \int xf_{X|Y}(x\mid y)dx=\int \frac{xf(x,y)}{f(y)}dxE(XY=y)=xfXY(xy)dx=f(y)xf(x,y)dx

其中,
fX∣Y(x∣y)=f(x,y)f(y)f_{X|Y}(x\mid y)=\frac{f(x,y)}{f(y)}fXY(xy)=f(y)f(x,y) 为条件概率密度的定义。

变量的期望可以拆分为可行域之间的条件期望和:
E(x)=∑P(Bi)E(x∣Bi)E(x) = \sum P(B_i)E(x\mid B_i)E(x)=P(Bi)E(xBi)

转载于:https://www.cnblogs.com/robinchen/p/11047599.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值