1 背景
自动驾驶车辆在行驶过程中经常会和其它动态车辆进行交互,比如超车,换道,切入,避让等等行为。基于自动驾驶车辆和其它车辆的博弈推演,希望能得到最终的车辆轨迹(自车+他车)用于轨迹规划,这也是传统自动驾驶的传统范式:感知--->预测--->规划。
但是学者们在自动驾驶轨迹预测研究的过程中发现,仅仅依赖单条轨迹的预测,无法达到理想的效果,因此最终引入了多模预测的概念。轨迹预测在模型未兴起之前大部分情况下都会放在Planning模块,但随着模型的兴起,逐渐过渡到感知侧或者说模型侧。
2 轨迹预测
在传统的自动驾驶框架下,自动驾驶车辆的轨迹预测位于感知与决策规划之间,扮演着一座桥梁角色。
2.1 轨迹预测
(1)定义:在自动驾驶技术中,轨迹预测通常指的是预测其他车辆、行人、自行车等交通参与者在未来一段时间内可能的运动轨迹。
(2)目的
- 避免碰撞:预测潜在的碰撞风险,提前采取措施。
- 路径规划:为自动驾驶车辆规划安全、高效的行驶路径。
- 交通流分析:理解交通流动态,优化车辆行为。 </