自动驾驶---Perception之多模预测

1 背景

        自动驾驶车辆在行驶过程中经常会和其它动态车辆进行交互,比如超车,换道,切入,避让等等行为。基于自动驾驶车辆和其它车辆的博弈推演,希望能得到最终的车辆轨迹(自车+他车)用于轨迹规划,这也是传统自动驾驶的传统范式:感知--->预测--->规划。

        但是学者们在自动驾驶轨迹预测研究的过程中发现,仅仅依赖单条轨迹的预测,无法达到理想的效果,因此最终引入了多模预测的概念。轨迹预测在模型未兴起之前大部分情况下都会放在Planning模块,但随着模型的兴起,逐渐过渡到感知侧或者说模型侧。

2 轨迹预测

        在传统的自动驾驶框架下,自动驾驶车辆的轨迹预测位于感知与决策规划之间,扮演着一座桥梁角色。

2.1 轨迹预测

(1)定义:在自动驾驶技术中,轨迹预测通常指的是预测其他车辆、行人、自行车等交通参与者在未来一段时间内可能的运动轨迹。

(2)目的

  • 避免碰撞:预测潜在的碰撞风险,提前采取措施。
  • 路径规划:为自动驾驶车辆规划安全、高效的行驶路径。
  • 交通流分析:理解交通流动态,优化车辆行为。

(3)方法

  • 物理模型:基于牛顿运动定律等物理法则预测轨迹。
  • 统计模型:使用历史数据和统计方法来预测可能的轨迹。
  • 机器学习方法:应用深度学习等算法,从大量轨迹数据中学习预测模型。
  • 行为预测:不仅预测位置,还预测交通参与者的行为意图。

2.2 单模和多模的定义

        自动驾驶轨迹预测中的单模(Unimodal)和多模(Multimodal)轨迹预测,主要区别在于对未来轨迹的确定性和多样性的处理上:

(1)单模轨迹预测

  • 单模轨迹预测方法输出单一模式的未来轨迹,通常代表模型认为最有可能发生的未来行动路径。
  • 这种方法适用于预测较为确定的行为,忽略了其他潜在可能性和不确定性。

(2)多模轨迹预测

  • 多模轨迹预测方法生成多模态的未来轨迹分布,表示交通参与者可能的多种行进路径,并估计每种路径发生的概率。
  • 这种方法能够更全面地考虑到不同可能性,适用于需要处理不确定性的情况,可以为规划和决策提供更丰富的信息。
  • 基于Transformer的多模态轨迹预测方法可以避免人工设计先验分布和损失函数,更好地捕捉轨迹预测的多模态性质。

2.3 预测技术介绍

(1)预测技术的重要性

  • 安全性:通过精准预判,系统能提前规划避障路径,优化行车速度与路线,有效应对突发状况,减少交通事故。
  • 行驶效率:预测技术帮助自动驾驶车辆优化行驶路线和速度,提高行驶效率。
  • 提升乘客体验:准确的预测技术有助于车辆在复杂交通环境中自如穿梭,提升乘客的舒适度和信任度。

(2)预测技术的方法分类

        自动驾驶车辆的预测技术主要围绕物理模型、经典机器学习、深度学习以及强化学习四大类别展开:

  • 物理模型
    • 利用车辆动力学和运动学理论,如恒定速度(CV)模型、恒定加速度(CA)模型,以及更复杂的恒定转弯速率和速度(CTRV)模型等。
    • 依赖完善的数学和统计技术,根据历史数据和预定义模型进行预测。
    • 简洁高效,计算效率高,但处理现实交通的复杂交互和不确定性时显得力不从心,通常适用于预测时间短于一秒的场景。
  • 经典机器学习
    • 包括支持向量机(SVM)、高斯过程(GP)和隐马尔可夫模型(HMM)等。
    • 通过学习历史轨迹模式来预测未来行为,能融入更多情境因素,处理更多种类的场景特征。
    • 泛化能力受限,尤其在处理未见过的驾驶策略时表现不佳。
  • 深度学习
    • 深度学习模型如RNN、LSTM、GRU等能有效处理序列数据,捕捉时间依赖;CNN擅长提取空间特征;还有最近几年大火的Transformer模型等
    • 注意力机制聚焦关键信息,提高预测的针对性。
    • 生成式对抗网络(GAN)和变分自编码器(VAE)等生成模型为多模态预测提供了可能。
    • 在捕获复杂模式、处理不同场景和生成更准确的轨迹预测方面表现出更好的性能,但需要大量标记的训练数据和计算资源。
  • 强化学习
    • 特别是逆强化学习(IRL)和深度逆强化学习(DIRL),通过模拟专家轨迹学习奖励机制,进而预测未来轨迹。
    • IRL通过奖励函数学习策略,区分不同行为的价值;DIRL采用深度网络逼近复杂奖励函数。
    • 结合深度学习网络,能更好地提取专家演示并考虑更多因素,但计算密集,需要长时间的训练。

(3)预测技术的实际应用

        自动驾驶车辆通过激光雷达、摄像头、雷达、超声波等传感器获取周围环境信息,结合大数据和AI算法,对交通场景进行分析和预测。例如,预判行人是否打算过马路,车辆是否打算变道等,并将预测的结果转化成可供人工智能处理的信息载体。通过与路况和车辆状态等数据结合,自动驾驶实现了对交通场景的全方位感知和预测。

(4)面临的挑战与研究方向

  • 实时性:模型设计需高度复杂,难以平衡精度与计算效率。
  • 不确定性:交通参与者的未来轨迹受到众多不可预知因素影响,预测难以达到绝对准确。
  • 传感器限制:传感器覆盖范围有限,易受遮挡、天气影响,导致跟踪不准确。
  • 数据短缺:实际应用中数据不足或缺失,影响预测的准确性。
  • 长期预测:初期小误差累积可能导致与真实轨迹偏离大,预测准确性降低。
  • 复杂环境适应性:在路口、环岛、繁忙市区等复杂动态环境中,模型设计难度增加。
  • 泛化与模型局限性:模型需在未见过的驾驶场景和车辆交互中保持准确预测。

        综上所述,可以了解到自动驾驶车辆的预测技术是自动驾驶技术中的关键环节,其准确性和实时性直接关系到自动驾驶汽车的安全性和行驶效率。随着自动驾驶技术的不断进步,自动驾驶预测能力(准确的说是模型的能力)将越来越强大,未来我们将会看到更加安全、智能和便捷的出行方式。

7de0b9b795904f769f8b5c1d11725e44.png

2.4 多模预测

        上面大概说了下单模多模的概念,本小节做一个更加详细的说明。多模预测,是指生成并评估多个可能的未来轨迹,而不是单一的确定性预测。这种技术旨在处理交通环境的不确定性,并模拟交通参与者(如其他车辆、行人)可能采取的不同行动策略。分以下几个方面对多模预测进行详细介绍:

2.4.1 多模预测的重要性

  • 应对不确定性:交通环境充满了不确定性,如其他车辆的驾驶意图、道路条件的变化等。多模预测通过考虑多种可能性,可以更好地应对这些不确定性。
  • 提高安全性:通过预测多种可能的未来轨迹,自动驾驶系统可以提前识别潜在的危险情况,并制定相应的避障策略,从而提高行驶的安全性。
  • 增强决策能力:多模预测为自动驾驶系统的决策模块提供了更多的选项,有助于系统做出更合理、更安全的决策。

2.4.2 多模预测的方法

        多模预测通常结合多种技术,包括但不限于深度学习、强化学习等,具体方法如下:

(1)基于深度学习的方法

  • 生成式模型:如生成式对抗网络(GAN)和变分自编码器(VAE)等,这些模型能够生成多个可能的未来轨迹样本。
  • 注意力机制:在深度学习模型中引入注意力机制,可以聚焦关键信息,提高预测的针对性和准确性,包括近两年应用比较好的Transformer大模型。
  • 序列模型:如循环神经网络(RNN)及其变种长短期记忆网络(LSTM)、门控循环单元(GRU)等,能够处理时间序列数据,捕捉交通参与者的行为模式。

(2)基于强化学习的方法

  • 强化学习:特别是逆强化学习(IRL)和深度逆强化学习(DIRL),通过模拟专家轨迹学习奖励机制,进而预测未来轨迹。这些方法能够考虑更多的交互因素,并生成多个可能的未来轨迹。
  • 概率模型:使用概率模型来估计每个未来轨迹的概率分布,从而生成多个具有不同概率的轨迹样本。这种方法可以处理预测中的不确定性,并给出不同轨迹的置信度。

2.4.3 多模预测的应用

        在自动驾驶系统中,多模预测通常用于以下方面:

  • 轨迹预测:预测其他交通参与者的未来轨迹,为自动驾驶车辆提供避障和路径规划的依据。
  • 风险评估:根据预测的多个未来轨迹,评估潜在的危险情况,并制定相应的应对策略。
  • 决策支持:为自动驾驶系统的决策模块提供多个可能的选项,帮助系统做出更合理、更安全的决策。

2.4.4 多模预测的挑战与研究方向

        尽管多模预测在自动驾驶领域具有重要的应用价值,但也面临一些挑战:

  • 计算复杂度:生成多个未来轨迹需要较高的计算资源,如何在保证预测准确性的同时降低计算复杂度是一个重要问题,通常情况下也需要剪枝的处理,否则下游收到多条运动轨迹也比较男处理。
  • 数据需求:多模预测需要大量的训练数据来覆盖各种可能的交通场景和驾驶策略。如何收集和处理这些数据是一个挑战,考验的是收集数据的能力。
  • 模型可解释性:基于深度学习等复杂模型的多模预测方法往往缺乏可解释性,这增加了验证和调试的难度。

85028b86f27a4d2dbe76b9e4efc6662b.png

2.5 单模多模的比较

        多模预测和单模预测在自动驾驶、机器学习及人工智能领域中有显著的区别,主要体现在预测方式、应用场景、优劣势等方面。通过以下三个方面对两者进行详细比较:

(1)定义与基本原理

  • 单模预测
    • 单模预测是指使用单一的数学模型或算法来预测未来的结果或趋势。在自动驾驶中,这可能意味着仅基于一种假设或场景来预测其他交通参与者的行为。
    • 优点:计算效率高,对特定任务的预测精度可能较高,且易于实现和解释。
    • 缺点:无法全面考虑所有可能性和不确定性,对于复杂多变的交通环境可能表现不佳,容易出现过拟合或欠拟合的问题。
  • 多模预测
    • 多模预测则是生成并评估多个可能的未来轨迹或结果,以应对不确定性和复杂性。在自动驾驶中,这意味着考虑其他车辆、行人可能采取的多种行动策略。
    • 优点:能够更全面地考虑不确定性,提高预测的鲁棒性和准确性,更适用于复杂多变的交通环境。
    • 缺点:计算复杂度较高,需要更多的计算资源和时间,且可能面临模型选择和权重分配等挑战。

(2)应用场景

  • 单模预测:适用于相对简单、稳定的环境,或当对预测精度和计算效率有较高要求时。例如,在某些简单的自动驾驶测试场景中,单模预测可能足以满足需求。
  • 多模预测:更适用于复杂多变的交通环境,如城市道路、高速公路等。在这些场景中,其他交通参与者的行为具有较大的不确定性和多样性,需要多模预测来全面考虑各种可能性。

(3)优劣势比较

  • 预测精度:多模预测通常比单模预测具有更高的预测精度,因为它能够考虑更多的可能性和不确定性。然而,这并不意味着多模预测总是优于单模预测,因为预测精度还受到模型选择、数据质量等因素的影响。
  • 计算效率:单模预测在计算效率上通常优于多模预测。由于只使用单一的模型或算法进行预测,因此计算过程相对简单快捷。而多模预测需要生成并评估多个可能的未来轨迹或结果,因此计算复杂度较高。
  • 鲁棒性:多模预测在应对不确定性和复杂性方面通常比单模预测更具鲁棒性。因为它能够考虑更多的可能性和场景变化,从而减少预测错误的风险。

3 可参考文献

        笔者也收集了一些近年来单模预测和多模预测方面值得关注的优秀论文,有兴趣的读者朋友们可以自行浏览:

        《Deep Learning-based Vehicle Behaviour Prediction For Autonomous Driving Applications: A Review》-------这篇综述论文提供了基于深度学习的车辆行为预测方法的全面回顾,涵盖了轨迹预测的作用、挑战以及不同的预测方法,包括单模和多模预测。

        《TPNet: Trajectory Proposal Network for Motion Prediction》------TPNet提出了一个新颖的两阶段运动预测框架,首先生成一组候选的未来轨迹作为提议,然后通过分类和细化这些提议来进行最终预测。这种方法有效地简化了运动预测问题的复杂性,并确保了多模态输出。

        《FusionAD: 预测与规划任务的多模态融合方案》------FusionAD是首个融合来自相机和激光雷达信息的统一框架,专注于自动驾驶的预测和规划任务。该框架通过构建基于transformer的多模态融合网络,有效地产生融合特征,以增强预测和规划任务的性能。

        《Motion Transformer with Global Intention Localization and Local Movement Refinement (MTR)》------MTR模型提出了一种新颖的运动解码器网络,通过两种类型的查询对运动预测进行建模,实现了全局意图定位和局部运动细化的联合优化。

        《MultiPath: Multiple Probabilistic Trajectory Prediction》------MultiPath论文认为轨迹的多模态或不确定性来源于意图的不确定性和控制的不确定性,通过使用trajectory anchor和参数化的offset来表示这两种不确定性。

        《多模态轨迹预测最新综述》------这是第一篇关于多模态轨迹预测(MTP)的综述,提供了MTP框架、数据集和评估指标的分类法,并讨论了未来研究的方向。

4 总结

        多模预测和单模预测各有其优劣势和适用场景。在选择使用哪种预测方式时,需要根据具体问题的复杂程度、预测精度的要求以及计算资源的限制等因素进行综合考虑,目前大部分的方案都会对多模的预测轨迹做一些融合。

        对于自动驾驶复杂系统而言,多模轨迹预测通常更为适用,因为它能够更全面地考虑交通环境中的不确定性和多样性,提高系统的安全性和可靠性。

 

  • 26
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能汽车人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值