【Tensorflow】1.14基础知识点

本文详细介绍了TensorFlow 1.14的基本概念,包括数据流图、张量和操作,通过实例演示了如何使用TensorFlow实现简单的线性回归模型,展示了变量、placeholder和Session的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorlow版本:1.14

1、Tensorflow简介

TensorFlow是采用数据流图(data  flow graphs)来计算, 所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算。节点(Nodes)在图中表示数学操作,图中的(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点,这就是TensorFlow名字的由来。

节点是数学操作,边是张量tensor。

张量(Tensor):张量有多种。零阶张量为 纯量或标量 (scalar) 也就是一个数值。比如 [1],一阶张量为 向量 (vector), 比如 一维的 [1, 2, 3],二阶张量为 矩阵 (matrix), 比如 二维的 [[1, 2, 3],[4, 5, 6],[7, 8, 9]],以此类推,还有 三阶 三维的 …

2、从一个例子讲起

首先,我们来看一个简单的例子:

import tensorflow as tf
import numpy as np
# tensorflow中大部分数据是float32

# create real data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

### create tensorflow structure start ###

# 定义变量
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))

# 如何计算预测值
y = Weights * x_data + biases

# loss function
loss = tf.reduce_mean(tf.square(y-y_data))

# 梯度下降优化器,定义learning rate
optimizer = tf.train.GradientDescentOptimizer(0.5)

# 训练目标是loss最小化
train = optimizer.minimize(loss)

# 初始化变量,即初始化 Weights 和 biases
init = tf.global_variables_initializer()

# 创建session,进行参数初始化
sess = tf.Session()
sess.run(init)

# 开始训练200步,每隔20步输出一下两个参数
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step,sess.run(Weights),sess.run(biases))
### create tensorflow structure end ###

在上面的例子中,我们想要预测的方程式y=0.1*x + 0.3,给定训练样本,通过梯度下降法来预测参数W和偏置b,我们使用numpy生成了我们的训练数据:

x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

随后,我们使用tf.Variable定义了我们的变量Weights和biases(以下简称w和b),Weights通过一个均匀分布随机产生,而bias则设置为0,同时二者的形状均为1维,因为就一个数:

Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))

好了,有了变量,我们想要学习w和b,只需要用训练数据x来得到预测值,最小化预测值和实际值的差距就好,所以,我们定义了损失函数为平方损失函数,并通过0.5学习率的梯度下降法来进行参数调整:

# 如何计算预测值
y = Weights * x_data + biases

# loss function
loss = tf.reduce_mean(tf.square(y-y_data))

# 梯度下降优化器,定义learning rate
optimizer = tf.train.GradientDescentOptimizer(0.5)

# 训练目标是loss最小化
train = optimizer.minimize(loss)

在tf中定义的变量都需要经过初始化的操作,所以我们定义了一个初始化变量的操作:

# 初始化变量,即初始化 Weights 和 biases
init = tf.global_variables_initializer()

接下来我们就可以开始训练了,训练必须创建一个session,通过run方法对指定的节点进行训练,这里一定要注意先要对参数进行初始化,否则后面是无法开始训练的。想要观察训练过程中的参数变化的话,也需要通过run方法:

# 创建session,进行参数初始化
sess = tf.Session()
sess.run(init)

# 开始训练200步,每隔20步输出一下两个参数
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step,sess.run(Weights),sess.run(biases))

这里 我们直接run的是train这一步,想要运行这一步,必须先得到optimizier和loss,想要得到loss就要得到预测值....依次往前推,所以run(train)实际上就是对整个tensor流图的训练。
好啦,说了这么多,我们来看一下我们的输出结果吧:

0 [ 0.65090138] [-0.04130311]
20 [ 0.23774943] [ 0.21987261]
40 [ 0.13388598] [ 0.2802889]
60 [ 0.10833587] [ 0.29515111]
80 [ 0.10205062] [ 0.2988072]
100 [ 0.10050445] [ 0.29970658]
120 [ 0.10012411] [ 0.29992783]
140 [ 0.10003054] [ 0.29998225]
160 [ 0.10000751] [ 0.29999563]
180 [ 0.10000186] [ 0.29999894]
200 [ 0.10000047] [ 0.29999974]

可以看到,经过200步,准确的说在80步左右的时候,我们的tensorflow已经能够很准确的将Weights和Bias学习出来了,有木有感觉很强大,哈哈!

3、tf.Session

Session 是 Tensorflow 为了控制,和输出文件的执行的语句. 运行 session.run() 可以获得你要得知的运算结果, 或者是你所要运算的部分,有两种使用Session的方式,我们可以从下面的例子中看出来,但在实际中,我们更推荐后者:

import tensorflow as tf

matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],[2]])

product = tf.matmul(matrix1,matrix2)

sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()


with tf.Session() as sess:
    result2 = sess.run(product)
    print(result2)

4、tf.Variable

在 Tensorflow 中,定义了某字符串是变量,它才是变量,这一点是与 Python 所不同的。定义语法: state = tf.Variable().如果你在 Tensorflow 中设定了变量,那么初始化变量是最重要的!!所以定义了变量以后, 一定要定义 init = tf.global_variables_initializer().到这里变量还是没有被激活,需要再在 sess 里, sess.run(init) , 激活 init 这一步.

import tensorflow as tf

# 定义变量,给定初始值和name
state = tf.Variable(0,name="counter")
# counter:0
print(state.name)

one = tf.constant(1)

new_value = tf.add(state,one)
update = tf.assign(state,new_value)

# 这里只是定义,必须用session.run来执行
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for _ in range(3):
        sess.run(update)
        print(sess.run(state))

5、TF placeholder

placeholder 是 Tensorflow 中的占位符,暂时储存变量.
Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据 sess.run(***, feed_dict={input: **}).

import tensorflow as tf

input1 = tf.placeholder(dtype=tf.float32)
input2 = tf.placeholder(dtype=tf.float32)

output = tf.multiply(input1,input2)

with tf.Session() as sess:
    print(sess.run(output,feed_dict={input1:[3.],input2:[5]}))

tf 如何打print

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import tensorflow as tf
cate_list = [3,2,5,6,22,66]
cate_list = tf.convert_to_tensor(cate_list, dtype=tf.int64)
with tf.Session() as sess:
    print(sess.run(cate_list))
    # [ 3  2  5  6 22 66]

参考:https://www.jianshu.com/p/ce213e6b2dc0

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值