椭圆内接四边形四极点调和分割定理是椭圆内接四边形的一个重要性质(可以推广至圆锥曲线)。
本人整理了一下思路,将证明过程简洁化,顺便加入了一些自己的想法。。(好吧事实上并不需要引理/滑稽)
定理:椭圆上给定四个点E,F,G,H;其中直线EH,FG交于A,直线EF,GH交于B,内接四边形EFGH对角线交于Q。若直线EG关于椭圆的极点为C,直线FH关于椭圆的极点为D,则A,B,C,D四点共线且A,B调和分割选段CD(A,B,C,D成调和点列),即(1/AC)+(1/AD)=(2/AB)附图
先介绍赫赫有名的一个重要定理—帕斯卡定理(与布列安桑定理对偶)
帕斯卡定理:圆锥曲线内接六角形(包括退化的六角形)其三对边交点共线。帕斯卡定理
该定理证明方方很多:如复数法,截线理论法,面积法等等,下面就提供一种方法:
这里对椭圆的情况进行证明(其余圆锥曲线情况证明过程类似):如上图,设AE∩BD=M,BF∩CE=N,AF∩CD=P.
在异于题设所在平面的空间上取一点为射影中心,将DB、CE和AE,BF射影为两对平行直线,再将其通过仿射变换为圆(如图1)。图1
由于两对边互相平行,得平行四边形BMEN⇒∠DBF=∠AEC即弧DF=弧AC⇒AD//CF
观察两个黄色△,由笛沙格定理的逆定理,对应点连线AF,CD,MN交于一点P,故M,P,N三点共线,得证。。。。
回到原命题,下面给出证明:
证明:
第一步-首先证明四点共线,up提供两种方法:
法1:内接四边形EFGH可以看作是退化的六边形,由帕斯卡定理得A,B,C,D四点共线,共线得证!
法2:由配极原则,C点的极线EG通过Q⇒Q点的极线AB通过C⇒A,B,C三点共线,
同理A,B,D三点共线,从而A,B,C,D四点共线,共线得证。
第二步-证明A,B调和分割线段CD:
如图,延长FD,CG分别交EC,HD于K,L;EC,DH延长交于M,设KD,CL交于N,连接BM,AL
注意到自(配)极三角形AQB,B点的极线AQ通过A,Q点的极线AB,N点的极线GF,M点的极线EH都通过A,故M,Q,N,B四点共线(同时推出了BM,DK,CL三线共点)
同理A,K,Q,L四点共线
在△MCD中,BM,DK,CL交于一点N,由赛瓦定理得(CB/BD)•(DL/LM) •(MK/KC)=1……(1)
注意到△MCD被直线AL所截,由梅涅劳斯定理得(CK/KM) •(ML/LD) •(DA/AC)=-1……(2)
(1)×(2)得BC/BD=-AC/AD,即(ABCD)=-1
即A,B调和分割线段CD,得证!
其实还有其他证明方法,可以发在评论区(前提是要有评论区。。。)
参考:《圆锥曲线切线的新探索(徐文平论文集)》