本文目录:
1.介绍股利贴现模型;
2.以贵州茅台为例根据现有情况估计模型内部各参数;
3.得出结论;
一、股利贴现模型(DDM)
我们知道给一项资产定价最朴素的想法是将它未来产生的所有现金流以一定的贴现率贴现至当前时刻。例如一只10年期票面利率为3%的国债,假定贴现率为3%、每年付一次利息,那么这只国债当前的价格为:用每年产生的利息以及第10年偿还的本金贴现至当前时刻。
现在,我们沿用这一思想考虑一只股票的价格。股票当前的价格应该等于未来各期现金流的贴现。债券的例子告诉我们,贴现率应该为该资产的预期收益率
。而股票的带来的现金流回报包括两部分:1.股利;2.期末将股票卖出后的现金流。因此,
即股票的当前价格等于未来各期股利的贴现和。这里有一个前提假设:
假设这一极限大于零,那么第t期的股价St 上涨的速度将超过
且St
+∞。这意味着在0时刻投资者预期股价将极速上涨且随着时间的推移会涨至无穷大,换句话说投资者仅因预期未来股价暴涨而买入,买入持有的唯一目的便是在t时刻出售给拥有同样预期的投资者并且毫不关系分红,这时便产生了资产泡沫。
股利贴现模型假设资产价格不存在泡沫,投资者均为理性人。
1.1戈登股利增长模型
到目前为止,虽然我们得出了当前时刻股价的计算公式,但事实上这一公式很难指导现实:如果我要给贵州茅台定价,我首先要对茅台明年的股利(D1)、后年的股利(D2)、大后年的股利(D3).....甚至是1000年以后的股利(D1000)做出预测,这显然是不可能的。因此为简化起见,从股利贴现模型(DDM)推出了更加实用的模型,即戈登股利增长模型。
市场上有些企业为吸引投资者或者股东要求,会每年以一定增速提高股利,例如今年股利为1元/股,股利增长率为10%,明年的股利为
,后年的股利为