YOLOv8-Worldv2 自定义识别目标

YOLOv8-Worldv2 提供了一种独特的方式来指定检测对象,这主要得益于其开放词汇(open-vocabulary)检测的能力。与传统 YOLO 模型不同的是,YOLOv8-Worldv2 不仅限于预定义的类别列表,而是可以通过文本描述来动态地指定想要检测的对象。下面详细介绍如何使用 YOLOv8-Worldv2 来指定检测对象。

使用文本提示指定检测对象

YOLOv8-Worldv2 利用视觉语言建模技术,能够根据文本提示识别图像中的物体。这意味着你可以通过提供一段描述性的文字来告诉模型你感兴趣的对象是什么。例如,如果你想让模型专注于检测“保温杯”、“马克杯”等特定物品,只需在调用模型时传入相应的文本提示即可。

from ultralytics import YOLOWorld

# 初始化 YOLOv8-Worldv2 模型
model = YOLOWorld('yolov8s-worldv2.pt')

# 设置自定义标签
custom_classes = ['Insulated_cup', 'mug', 'paper_cup', 'drawing_paper', 'laptop', 'screen', 'woman', 'wirless_earphone', 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方佑

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值