YOLOv8-Worldv2 提供了一种独特的方式来指定检测对象,这主要得益于其开放词汇(open-vocabulary)检测的能力。与传统 YOLO 模型不同的是,YOLOv8-Worldv2 不仅限于预定义的类别列表,而是可以通过文本描述来动态地指定想要检测的对象。下面详细介绍如何使用 YOLOv8-Worldv2 来指定检测对象。
使用文本提示指定检测对象
YOLOv8-Worldv2 利用视觉语言建模技术,能够根据文本提示识别图像中的物体。这意味着你可以通过提供一段描述性的文字来告诉模型你感兴趣的对象是什么。例如,如果你想让模型专注于检测“保温杯”、“马克杯”等特定物品,只需在调用模型时传入相应的文本提示即可。
from ultralytics import YOLOWorld
# 初始化 YOLOv8-Worldv2 模型
model = YOLOWorld('yolov8s-worldv2.pt')
# 设置自定义标签
custom_classes = ['Insulated_cup', 'mug', 'paper_cup', 'drawing_paper', 'laptop', 'screen', 'woman', 'wirless_earphone',