LLM幻觉的终结者:华人团队揭示对数线性定律与CoDA策略

引言:当AI开始“说谎”

大语言模型(LLMs)的崛起彻底改变了人工智能领域,但“幻觉”问题始终如影随形。即使基于高质量训练数据,LLMs仍会编造事实,例如“一本正经地胡说八道”。这种现象被称为“LLM幻觉”,是阻碍AI可信度的核心难题。

如今,来自UIUC、哥伦比亚大学等顶尖机构的华人团队,从LLM的根本机制出发,首次揭示了幻觉的底层规律,并提出创新解决方案。他们的研究不仅为理解幻觉提供了理论框架,更通过对数线性定律CoDA策略,为构建更可控、更可信的AI开辟了新路径。


一、知识遮蔽:幻觉的根源

研究团队发现,LLM的幻觉并非单纯源于训练数据的缺陷,而是模型内部知识竞争的结果——知识遮蔽(Knowledge Overshadowing)

什么是知识遮蔽?
当模型中高频知识(如广泛传播的事实)与低频知识(如小众或新兴信息)同时存在时,高频知识会掩盖低频知识,导致模型生成错误输出。例如:

  • 问题:“非洲有哪些著名机器学习研究者?”
  • 幻觉输出:“Yoshua Bengio”(加拿大人,非非洲裔)。
  • 原因:模型忽略了“非洲”这一约束,优先调用更常见的“机器学习研究者”知识。

二、对数线性定律:预测幻觉的数学公式

通过合成数据集实验,团队发现幻觉率与三个关键因素呈对数线性关系

  1. 相对知识流行度(P):高频知识与低频知识的样本数量比(如P=10表示高频知识是低频的10倍)。
  2. 相对知识长度(L):知识陈述的token长度差异(如长文本更易被掩盖)。
  3. 模型规模(S):模型参数量越大,幻觉风险越高。

公式
[
\text{幻觉率} = \alpha \cdot \ln§ + \beta \cdot \ln(L) + \gamma \cdot \ln(S) + \delta
]

  • 结论:高频、长文本或超大规模模型,均会显著增加幻觉概率。

三、CoDA策略:对抗幻觉的“反遮蔽”解码

为减少幻觉,团队提出CoDA(Contrastive Decoding with Attenuation)策略,通过以下步骤放大被遮蔽知识:

  1. 检测被遮蔽的token

    • 通过逐步屏蔽输入中的关键token(如“非洲”),观察模型输出的变化。
    • 若输出偏向高频知识(如忽略“非洲”),则判定该token被遮蔽。
  2. 量化遮蔽效应

    • 使用R-PMI(相对点互信息)ERM(逃避奖励机制),评估被遮蔽知识对输出的影响。
  3. 增强被遮蔽知识

    • 对比原始输入与屏蔽后的输出,通过对比解码修正偏差,优先保留低频知识。

四、实验验证:CoDA效果显著

在多个任务中,CoDA的表现远超基线方法:

任务CoDA提升幅度基线方法
Overshadow27.9%贪心解码
MemoTrap13.1%自一致性方法
NQ-Swap18.3%强化学习策略

关键发现

  • 模型越大,幻觉越严重:13B参数的LLM比160M模型幻觉率高3倍。
  • 知识长度是关键:长文本的幻觉率比短文本高40%。

五、未来展望:更可控的AI

这项研究的意义远不止于理论突破:

  1. 预测幻觉风险:通过公式提前评估模型在特定任务中的幻觉概率。
  2. 优化模型设计:在训练前调整数据分布,减少高频知识的“霸权”。
  3. 可解释性提升:CoDA为调试模型提供了可解释的路径。

正如研究团队所说:“未来的语言模型,不应只是‘记忆库’,更应是‘知识协调者’。”


结语:AI可信度的里程碑

从“幻觉的数学规律”到“对抗策略”,华人团队的成果标志着LLM可控性研究的重要进展。当AI不仅能“思考”还能“自省”,我们离真正可靠的人工智能又近了一步。

论文链接arXiv预印本
关键词:LLM幻觉、知识遮蔽、对数线性定律、CoDA策略

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方佑

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值