单细胞数据高级分析之消除细胞周期因素 | Removal of cell cycle effect

The normalization method described above aims to reduce the effect of technical factors in scRNA-seq data (primarily, depth) from downstream analyses. However, heterogeneity in cell cycle stage, particularly among mitotic cells transitioning between S and G2/M phases, also can drive substantial transcriptomic variation that can mask biological signal. To mitigate this effect, we use a two-step approach:

1) quantify cell cycle stage for each cell using supervised analyses with known stage-specific markers,

2) regress the effect of cell cycle stage using the same negative binomial regression as outlined above.

For the first step we use a previously published list of cell cycle dependent genes (43S phase genes, 54 G2/M phase genes) for an enrichment analysis similar to that proposed in ref. 11.

For each cell, we compare the sum of phase-specific gene expression (log10 transformed UMIs) to the distribution of 100 random background genes sets, where the number of background genes is identical to the phase gene set, and the background genes are drawn from the same expression bins. Expression bins are defined by 50 non-overlapping windows of the same range based on log10(mean UMI). The phase-specific enrichment score is the expression z-score relative to the mean and standard deviation of the background gene sets. Our final ‘cell cycle score’ (Extended Data Fig. 1) is the difference between S-phase score and G2/M-phase score.

 

For a final normalized dataset with cell cycle effect removed, we perform negative binomial regression with technical factors and cell cycle score as predictors. Although the cell cycle activity was regressed out of the data for downstream analysis, we stored the computed cell cycle score before regression, enabling us to remember the mitotic phase of each individual cell. Notably, our regression strategy is tailored to mitigate the effect of transcriptional heterogeneity within mitotic cells in different phases, and should not affect global differences between mitotic and non-mitotic cells that may be biologically relevant.

 

get.cc.score <- function(cm, N=100, seed=42) {
  set.seed(seed)
  cat('get.cc.score, ')
  cat('number of random background gene sets set to', N, '\n')
  
  min.cells <- 5
  
  cells.mols <- apply(cm, 2, sum)
  gene.cells <- apply(cm>0, 1, sum)
  cm <- cm[gene.cells >= min.cells, ]
  
  gene.mean <- apply(cm, 1, mean)
  
  breaks <- unique(quantile(log10(gene.mean), probs = seq(0,1, length.out = 50)))
  gene.bin <- cut(log10(gene.mean), breaks = breaks, labels = FALSE)
  names(gene.bin) <- rownames(cm)
  gene.bin[is.na(gene.bin)] <- 0
  
  regev.s.genes <- read.table(file='./annotation/s_genes.txt', header=FALSE, stringsAsFactors=FALSE)$V1
  regev.g2m.genes <- read.table(file='./annotation/g2m_genes.txt', header=FALSE, stringsAsFactors=FALSE)$V1
  
  goi.lst <- list('S'=rownames(cm)[!is.na(match(toupper(rownames(cm)), regev.s.genes))],
                  'G2M'=rownames(cm)[!is.na(match(toupper(rownames(cm)), regev.g2m.genes))])
  
  n <- min(40, min(sapply(goi.lst, length)))
  goi.lst <- lapply(goi.lst, function(x) x[order(gene.mean[x], decreasing = TRUE)[1:n]])
  
  bg.lst <- list('S'=get.bg.lists(goi.lst[['S']], N, gene.bin),
                 'G2M'=get.bg.lists(goi.lst[['G2M']], N, gene.bin))
  
  all.genes <- sort(unique(c(unlist(goi.lst, use.names=FALSE), unlist(bg.lst, use.names=FALSE))))
  
  expr <- log10(cm[all.genes, ]+1)
  
  s.score <- enr.score(expr, goi.lst[['S']], bg.lst[['S']])
  g2m.score <- enr.score(expr, goi.lst[['G2M']], bg.lst[['G2M']])
  
  phase <- as.numeric(g2m.score > 2 & s.score <= 2)
  phase[g2m.score <= 2 & s.score > 2] <- -1
  
  return(data.frame(score=s.score-g2m.score, s.score, g2m.score, phase))
}

  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值