标准化算法_归一化(MinMax)和标准化(Standard)的区别

标准化和归一化是数据预处理的重要方法。归一化将数据范围缩放至0-1之间,而标准化使数据服从均值0、方差1的标准正态分布。在KNN等距离度量的算法中,标准化更常用于保持样本间距和满足统计学假设。当存在异常值时,标准化能更好地处理数据分布,避免样本被“挤”到一起,有助于模型更快收敛。
摘要由CSDN通过智能技术生成

7dfcf6c91dd1ee66f447e0021e9a676f.png

此文参考https://blog.csdn.net/u010947534/article/details/86632819

定义上的区别

归一化:将数据的值压缩到0到1之间,公式如下

标准化:将数据所防伪均值是0,方差为1的状态,公式如下:

归一化、标准化的好处:

在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数的基础都是假设所有的特征都是零均值并且具有同一阶数上的方差。如果某个特征的方差比其他特征大几个数量级,那么它就会在学习算法中占据主导位置,导致学习器并不能像我们说期望的那样,从其他特征中学习。

举一个简单的例子,在KNN中,我们需要计算待分类点与所有实例点的距离。假设每个实例点(instance)由n个features构成。如果我们选用的距离度量为欧式距离,如果数据预先没有经过归一化,那么那些绝对值大的features在欧式距离计算的时候起了决定性作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值