两个三维向量叉积_线性代数的本质课程笔记(中)点积和叉积

这篇博客主要讲解了三维向量的点积和叉积概念。点积从投影角度和对位相乘两方面进行阐述,揭示了线性变换的对偶性。叉积部分介绍了它生成的新向量性质,通过行列式和线性变换的关系解释了叉积的几何意义。文章提供了相关视频链接以深入理解。
摘要由CSDN通过智能技术生成

昨天更新的线性代数的本质课程笔记受到了大家的广泛好评,小编为了把后面的笔记尽早更新出来,所以本周的推荐系统系列暂不更新啦,希望大伙能理解哇!

1、点积

视频地址:https://www.bilibili.com/video/av6299284?from=search&seid=12903800853888635103

点积的标准观点

如果我们有两个维数相同的向量,他们的点积就是对应位置的数相乘,然后再相加:

a7d00576ce3f59b62811a24f0df167ec.png

从投影的角度看,要求两个向量v和w的点积,可以将向量w朝着过原点的向量v所在的直线进行投影,然后将w投影后的长度乘上向量v的长度(注意两个向量的的夹角)。

624a5d876be2718adde67e4f58267449.png

7f19c07d98a2a32809e31ea578f6c276.png

当两个向量的夹角小于90度时,点积后结果为正,如果两个向量垂直,点积结果为0,如果两个向量夹角大于90度,点积结果为负。

一个有趣的发现是,你把w投影到v上面,或者把v投影到w上面,结果是相同的。

83885091f24d9a117768632386b8d36c.png

但是你不觉得上面两个过程是完全不同的嘛?接下来就直观解释一下。

假设我们有两个长度完全相同的向量v和w,利用其对称性,无论将v投影到w上还是将w投影到v上,结果都是一样的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值