sklearn—支持向量机

本文介绍了支持向量机(SVC)的基本概念及其特点。SVC是一种有效的监督学习方法,适用于分类、回归及孤立点检测等问题。尤其当特征维度高于样本数量时,SVC仍能保持较好的性能。此外,SVC支持多种内核函数,使其应用范围广泛。
摘要由CSDN通过智能技术生成

SVC介绍:

  

拟合出来的模型为一个超平面
解决与样本维数无关,适合做文本分类
解决小样本、非线性、高维
是用于分类、回归、孤立点检测的监督学习方法的集合。
优点:
有效的高维空间
维数大于样本数的时候仍然有效
在决策函数中使用训练函数的子集
通用(支持不同的内核函数:线性、多项式、 s 型等)
缺点:
不适用于特征数远大于样本数的情况
不直接提供概率估计
接受稠密和稀疏的输入

 



转载于:https://www.cnblogs.com/crawer-1/p/8548712.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值