CRR二叉树模型和例题
CRR二叉树模型
CRR二叉树模型(Cox-Ross-Rubinstein模型),简称CRR模型。
第1步:确定p,u,d参数。
其中, 为把时间分成的许多小的时间段;
上升的比率为u,它的概率为p;
下降的比率为d,它的概率为1-p;
r为利率;
为标准差;
第2步:二叉树结构。
当时间为0时,证券价格为S,时间为时,证券价格要么上涨到Su,要么下跌到Sd;时间为2时,证券价格就有3种可能,分别为,以此类推,在时间i,证券价格有i+1种可能,用公式表示为
其中,j=0,1,2,3,…,i=1,2,3,…。
第3步:根据二叉树进行倒推定价。
在二叉树模型中,期权定价从树形图末端开始,采用倒推定价法进行。由于在T时刻欧式看跌期权现金流为max(K-S,0),求解T-时刻每一节点上的期权价格时都可以通过将T时刻齐全现金流预期值以无风险收益率进行贴现求出。
假设将欧式看跌期权的存续期分成N个长度为的小区间,设表示在时刻i第j个节点处的欧式看跌期权价格,也称为节点(i,j)的期权价值,同时表示节点(i,j)处的标的价格,欧式看跌期权到期价值是max(K-S,0),所以有
其中,j=0,1,2,3,…,N。
当时间从i变到(i+1)时,从节点(i,j)移动到(i+1,j+1)的概率为p,移动到(i+1,j)的概率为(1-p),则在风险中性情况下
当我们选择的时间间隔足够小时,就