单步二叉树期权定价推导
单步二叉树模型
假设一只股票的价格为20美元,三个月后股价可能是22美元或者18美元,此时我们想为执行价格为21美元的看涨期权定价。
定价的核心在于,创造一个无风险投资组合,这个组合包含了我们想要定价的期权和股票,
无论股价如何变化(22美元或者18美元),投资组合的价值都不变。用无风险收益率对投资组合的未来价值折现就可以得到投资组合的现值,之后就可以很容易计算期权价值。
1. 例子
假设我们做多 Δ \Delta Δ份股票和做空1份期权,组成一个投资组合。
在期末时,
- 股价上涨到22美元,股票部分价值为22 Δ \Delta Δ,期权部分价值:21-22=-1,投资组合价值:22 Δ \Delta Δ - 1
- 股价下跌到18美元:股票部分价值为18 Δ \Delta Δ,期权部分价值:0(不行权),投资组合价值:18 Δ \Delta Δ
若投资组合无风险,则
22 Δ − 1 = 18 Δ 22\Delta - 1=18\Delta 22Δ−1=18Δ
Δ = 0.25 \Delta=0.25 Δ=0.25
即,若持有0.25份股票和1份期权则投资组合的价值不受股价变动影响。
如果股价为22,投资组合未来价值为:
22 ∗ 0.25 − 1 = 4.5 22*0.25-1=4.5 22∗0.25−1=4.5
如果股价为18,投资组合未来价值为:
18 ∗ 0.25 − 1 = 4.5 18*0.25-1=4.5 18∗0.25−1=4.5
假设三个月后行权,无风险利率为4%,接下来再对投资组合未来价值折现,
4.5 e − 0.04 ∗ 3 / 12 = 4.455 4.5e^{-0.04*3/12}=4.455 4.5e−0.04∗3/12=4.455
期权价值为,
5 − 4.455 = 0.545 5-4.455=0.545 5−4.455=0.545
2. 推广
假设:
- 股价上升幅度为 u u u, 下降幅度为d,
- t 0 t_0 t0时股价为 S 0 S_0 S0,t期末时股价可能为 u S 0 uS_0 uS0或者 d S 0 dS_0 dS0
- t 0 t_0 t0时期权价为 f f f,则期末时期权价值可能为 f u f_u fu或者 f d f_d fd
- 无风险收益率为r。
u S 0 Δ − f u ( 股 价 上 涨 ) = d S 0 Δ − f d ( 股 价 下 降 ) uS_0\Delta-f_u(股价上涨)=dS_0\Delta-f_d(股价下降) uS0Δ−fu(股价上涨)=dS