二叉树期权定价推导

单步二叉树期权定价推导

单步二叉树模型

假设一只股票的价格为20美元,三个月后股价可能是22美元或者18美元,此时我们想为执行价格为21美元的看涨期权定价。

定价的核心在于,创造一个无风险投资组合,这个组合包含了我们想要定价的期权和股票,
无论股价如何变化(22美元或者18美元),投资组合的价值都不变。用无风险收益率对投资组合的未来价值折现就可以得到投资组合的现值,之后就可以很容易计算期权价值。

1. 例子

假设我们做多 Δ \Delta Δ份股票和做空1份期权,组成一个投资组合。

在期末时,

  1. 股价上涨到22美元,股票部分价值为22 Δ \Delta Δ,期权部分价值:21-22=-1,投资组合价值:22 Δ \Delta Δ - 1
  2. 股价下跌到18美元:股票部分价值为18 Δ \Delta Δ,期权部分价值:0(不行权),投资组合价值:18 Δ \Delta Δ

若投资组合无风险,则
22 Δ − 1 = 18 Δ 22\Delta - 1=18\Delta 22Δ1=18Δ
Δ = 0.25 \Delta=0.25 Δ=0.25
即,若持有0.25份股票和1份期权则投资组合的价值不受股价变动影响。

如果股价为22,投资组合未来价值为:
22 ∗ 0.25 − 1 = 4.5 22*0.25-1=4.5 220.251=4.5
如果股价为18,投资组合未来价值为:
18 ∗ 0.25 − 1 = 4.5 18*0.25-1=4.5 180.251=4.5
假设三个月后行权,无风险利率为4%,接下来再对投资组合未来价值折现,
4.5 e − 0.04 ∗ 3 / 12 = 4.455 4.5e^{-0.04*3/12}=4.455 4.5e0.043/12=4.455
期权价值为,
5 − 4.455 = 0.545 5-4.455=0.545 54.455=0.545

2. 推广

假设:

  1. 股价上升幅度为 u u u, 下降幅度为d,
  2. t 0 t_0 t0时股价为 S 0 S_0 S0,t期末时股价可能为 u S 0 uS_0 uS0或者 d S 0 dS_0 dS0
  3. t 0 t_0 t0时期权价为 f f f,则期末时期权价值可能为 f u f_u fu或者 f d f_d fd
  4. 无风险收益率为r。

u S 0 Δ − f u ( 股 价 上 涨 ) = d S 0 Δ − f d ( 股 价 下 降 ) uS_0\Delta-f_u(股价上涨)=dS_0\Delta-f_d(股价下降) uS0Δfu()=dS

二叉树模型期权定价数学推导如下: 假设有一个股票价格为S的资产,其价格在每个时间步长中有两种可能的变化:上涨或下跌。假设上涨的概率为p,下跌的概率为1-p。假设每个时间步长的长度为Δt,总共有n个时间步长。则在第i个时间步长中,股票价格为Si=S*(u^i)*(d^(n-i)),其中u为上涨幅度,d为下跌幅度,满足u*d=1,即u=1/d。因此,上涨幅度和下跌幅度之间存在一个负相关关系。 假设我们有一个欧式看涨期权,其行权价格为K,到期时间为T。则该期权的价值为V(S,t),其中t表示当前时间。根据无套利原理,该期权的价值必须满足以下条件: V(S,t)=pV(Su,t+Δt)+(1-p)V(Sd,t+Δt),其中V(Su,t+Δt)表示在上涨状态下的期权价值,V(Sd,t+Δt)表示在下跌状态下的期权价值。 根据期权的到期收益,我们可以得到以下公式: V(Su,T)=max(Su-K,0),V(Sd,T)=max(Sd-K,0) 因此,我们可以通过递归地向后计算来确定期权的价值。具体来说,我们从到期时间开始,计算出每个时间步长的期权价值,然后向前递归计算出当前时间的期权价值。最终,我们可以得到当前时间的期权价值V(S,0)。 在实际计算中,我们可以使用二叉树来表示股票价格的变化,并使用递归算法来计算期权的价值。具体来说,我们可以从到期时间开始,计算出每个时间步长的股票价格,并将其存储在二叉树中。然后,我们可以使用递归算法来计算每个节点的期权价值,最终得到根节点的期权价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值