点击蓝字
关注我们
正态分布的一个重要特性就是曲线的形态和标准差之间的关系。它有三个重要特征:以均值为中心、左右对称、钟形状态。大部分自然现象或人为的程序是呈现正态分布的,或经由转换后可以用正态分布的形式来表现。
正态分布可以通过平均数和标准差即可完整描述。正态性是许多统计程序的先决条件 - 检查它!在正态曲线下99.73%的面积包含在从平均值到-3标准差和+3标准差之间的区域,参见下图。这个原理也在控制图中得到广泛的应用。
我们可以利用正态概率图来衡量一组数据是否为“正态分布”,若该分布趋近于正态,则将会趋近于一条直线。其Minitab软件的路径:统计 > 基本统计量 > 正态性检验;当然也可以使用另外一个路径:图形 > 概率图。生成正态概率图并进行假设检验 ,以检查观测值是否服从正态分布 。对于正态性检验 ,假设为H0:数据服从正态分布 与 H1:数据不服从正态分布。“ p” 值 – 用于衡量您的数据分布是否不同于正态分布的数值。如果p值小于0.05,那么您可以说您的数据不服从正态分布,其置信度是95%。中心极限定理表明,如果n足够大,样本平均值( x )或其总和 的分布,都近似于正态分布&