matlab求系统根轨迹和系统增益,控制系统的根轨迹分析

本文介绍了MATLAB中进行根轨迹分析的方法,包括根轨迹的概念、稳定性、稳态性能和动态性能的分析。通过根轨迹,可以评估控制系统的稳定性并确定增益值。文中展示了使用pzmap和rlocus函数绘制零极点图和根轨迹图的实例,以及rlocfind函数查找特定闭环极点对应的开环增益。
摘要由CSDN通过智能技术生成

一、根轨迹分析方法的概念

所谓根轨迹是指,当开环系统某一参数从零变到无穷大时,闭环系统特征方程的根在s平面上的轨迹。一般来说,这一参数选作开环系统的增益K,而在无零极点对消时,闭环系统特征方程的根就是闭环传递函数的极点。

根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可以对系统进行各种性能分析,

1.稳定性

当开环增益K从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半s平面,因此这个系统对所有的K值都是稳定的。如果根轨迹越过虚轴进入右半s平面,则其交点的K值就是临界稳定开环增益。

2.稳态性能

开环系统在坐标原点有一个极点,因此根轨迹上的K值就是静态速度误差系数,如果给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。

3.动态性能

当00.5时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,且超调量与K成正比。

例exp4_18.m

%exp4_18.m

%对根轨迹进行分析

%二阶开环系统为H(s)=K/(s*(0.5s+1))

clear

closeall

clc

num=1;

den=[0.510];

rlocus(num,den);

text(0.1,0.1,'k=0');

text(-0.9,0.1,'k=0.5');

二、根轨迹分析函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值