fataexception matlab,人工势场法路径规划(附MAtlab程序)

概念解释

人工势场法路径规划是由Khatib提出的一种虚拟力法(Oussama Khatib,Real-Time obstacle Avoidance for Manipulators and Mobile Robots. Proc of The 1994 IEEE.)。它的基本思想是将机器人在周围环境中的运动,设计成一种抽象的人造引力场中的运动,目标点对移动机器人产生“引力”,障碍物对移动机器人产生“斥力”,最后通过求合力来控制移动机器人的运动。应用势场法规划出来的路径一般是比较平滑并且安全,但是这种方法存在局部最优点问题。

807707048f67c547098af06bb5a0f5b3.png

如图所示,机器人在一个二维环境下运动,图中指出了机器人,障碍和目标之间的相对位置。

18d3a7732475c316ac04d9e4c24f27e8.png

187ffb2677d47677c9cb08be230c7614.png

这个图比较清晰的说明了人工势场法的作用,物体的初始点在一个较高的“山头”上,要到达的目标点在“山脚”下,这就形成了一种势场,物体在这种势的引导下,避开障碍物,到达目标点。

人工势场包括引力场合斥力场,其中目标点对物体产生引力,引导物体朝向其运动(这一点有点类似于A*算法中的启发函数h)。障碍物对物体产生斥力,避免物体与之发生碰撞。物体在路径上每一点所受的合力等于这一点所有斥力和引力的和。这里的关键是如何构建引力场和斥力场。下面我们分别讨论一下:

4e72af601cd9418c319f133a272120b4.png

f1dc6c5922005ed44cec6dff41059e55.png

77340e1f2f17984a1c3de33992489b96.png

Fig .引力场模型

e6cd97b488b1725a98faecf8983668d1.png

Fig 斥力场模型

7ae2f249aab94a2c46d93beed30804ea.png

11349972da62b46e50ca9327903e520c.png

资料链接

路径规划算法初探http://blog.csdn.net/u011978022/article/details/49912515

关于人工势场方法的研http://kovan.ceng.metu.edu.tr/~kadir/academia/courses/grad/cs548/hmws/hw2/report/apf.pdf

人工势场方法整理http://letsmakerobots.com/artificial-potential-field-approach-and-its-problems

人工势场方法的改进版本http://www.doc88.com/p-738493052458.html

人工势场方法论坛版 http://www.ilovematlab.cn/thread-188840-1-1.html

人工势场法matlab 程序末点震荡版:http://download.csdn.net/detail/programming2015/8589191#comment

人工势场法简介PPThttp://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf

人工势场法matlab程序改进成功版本:http://www.ilovematlab.cn/thread-93531-1-1.html

MATLAB代码实现

传统人工势场法程序

主程序:

clear clc

Xo=[0 0];%起点位置

k=15;%计算引力需要的增益系数

m=4;%计算斥力的增益系数,都是自己设定的。

Po=2.5;%障碍影响距离,当障碍和车的距离大于这个距离时,斥力为0,即不受该障碍的影响。也是自己设定。 n=7;%障碍个数 l=0.2;%步长

J=600;%循环迭代次数

%如果不能实现预期目标,可能也与初始的增益系数,Po设置的不合适有关。

%end

%给出障碍和目标信息

Xsum=[10 10;1 1.5;3 2.2;4 4.5;3 6;6 2;5.5 6;8 8.2];%这个向量是(n+1)*2维,其中[10 10]是目标位置,剩下的都是障碍的位置。

Xj=Xo;%j=1循环初始,将车的起始坐标赋给Xj

%***************初始化结束,开始主体循环****************** for j=1:J%循环开始

Goal(j,1)=Xj(1);%Goal是保存车走过的每个点的坐标。刚开始先将起点放进该向量。 Goal(j,2)=Xj(2);

%调用计算角度模块

Theta=compute_angle(Xj,Xsum,n);%Theta是计算出来的车和障碍,和目标之间的与X轴之间的夹角,统一规定角度为逆时针方向,用这个模块可以计算出来。 %调用计算引力模块

Angle=Theta(1);%Theta(1)是车和目标之间的角度,目标对车是引力。 angle_at=Theta(1);%为了后续计算斥力在引力方向的分量赋值给angle_at

[Fatx,Faty]=compute_Attract(Xj,Xsum,k,Angle);%计算出目标对车的引力在x,y方向的两个分量值。 for i=1:n

angle_re(i)=Theta(i+1);%计算斥力用的角度,是个向量,因为有n个障碍,就有n个角度。 end

%调用计算斥力模块

[Yrerxx,Yreryy]=compute_repulsion(Xj,Xsum,m,angle_re,n,Po);%计算出斥力在x,y方向的分量数组。

%计算合力和方向,这有问题,应该是数,每个j循环的时候合力的大小应该是一个唯一的数,不是数组。应该把斥力的所有分量相加,引力所有分量相加。 Fsumyj=Faty+Yreryy;%y方向的合力 Fsumxj=Fatx+Yrerxx;%x方向的合力

Position_angle(j)=atan(Fsumyj/Fsumxj);%合力与x轴方向的夹角向量

%计算车的下一步位置 if Fsumyj < 0 && Fsumxj <0

Xnext(1)=Xj(1)-l*cos(Position_angle(j)); Xnext(2)=Xj(2)-l*sin(Position_angle(j)); else

Xnext(1)=Xj(1)+l*cos(Position_angle(j)); Xnext(2)=Xj(2)+l*sin(Position_angle(j)); end

%保存车的每一个位置在向量中 Xj=Xnext; %判断

if ((Xj(1)-Xsum(1,1))>0)&((Xj(2)-Xsum(1,2))>0)%是应该完全相等的时候算作到达,还是只是接近就可以?现在按完全相等的时候编程。 %K=j%记录迭代到多少次,到达目标。 break; end end K=j;

Goal(K,1)=Xsum(1,1);%把路径向量的最后一个点赋值为目标 Goal(K,2)=Xsum(1,2);

%***********************************画出障碍,起点,目标,路径点************************* %画出路径 X=Goal(:,1); Y=Goal(:,2);

%路径向量Goal是二维数组,X,Y分别是数组的x,y元素的集合,是两个一维数组。 x=[1 3 4 3 6 5.5 8 ];%障碍的x坐标 y=[1.5 2.2 4.5 6 2 6 8.2 ];

plot(x,y,'o',Xsum(1,1),Xsum(1,2),'v',0,0,'ms',X,Y,'.r');

计算角度分程序:

function

Y=compute_angle(X,Xsum,n)%Y是引力,斥力与x轴的角度向量,X是起点坐标,

Xsum是目标和障碍的坐标向量,是(n+1)*2矩阵

for i=1:n+1%n是障碍数目

deltaXi=Xsum(i,1)-X(1)

deltaYi=Xsum(i,2)-X(2)

ri=sqrt(deltaXi^2+deltaYi^2)

if deltaXi>0

theta=asin(deltaXi/ri)

else

theta=pi-asin(deltaXi/ri)

end

if i==1%表示是目标

angle=theta else

angle=pi+theta end

Y(i)=angle%保存每个角度在Y向量里面,第一个元素是与目标的角度,后面都是与障碍的角度

end

计算引力分程序:

function [Yatx,Yaty]=compute_Attract(X,Xsum,k,angle)%输入参数为当前坐标,目标坐标,增益常数,分量和力的角度

%把路径上的临时点作为每个时刻的

Xgoal

R=(X(1)-Xsum(1,1))^2+(X(2)-Xsum(1,2))^2;%路径点和目标的距离平方

r=sqrt(R);%路径点和目标的距离

Yatx=k*r*cos(angle);

Yaty=k*r*sin(angle);

end

计算斥力分程序:

%斥力计算

function [Yrerxx,Yreryy]=compute_repulsion(X,Xsum,m,angle_re,n,Po)%输入参数为当前坐标,Xsum是目标和障碍的坐标向量,增益常数,障碍,目标方向的角度

for i=1:n

Rrei(i)=(X(1)-Xsum(i+1,1))^2+(X(2)-Xsum(i+1,2))^2;%路径点和障碍的距离平方

rre(i)=sqrt(Rrei(i));%路径点和障碍的距离保存在数组rrei中

if rre(i)>Po%如果每个障碍和路径的距离大于障碍影响距离,斥力令为0

Yrerx(i)=0

Yrery(i)=0

else

Yrer(i)=m*(1/rre(i)-1/Po)^2*1/(rre(i)^2)%分解的Fre1向量

Yrerx(i)=Yrer(i)*cos(angle_re(i))%angle_re(i)=Y(i+1)

Yrery(i)=Yrer(i)*sin(angle_re(i)) end%判断距离是否在障碍影响范围内

end

Yrerxx=sum(Yrerx)%叠加斥力的分量

Yreryy=sum(Yrery)

改进势场法程序:

主程序:

clear all;

%障碍和目标,起始位置都已知的路径规划,意图实现从起点可以规划出一条避开障碍到达目标的路径。

%初始化车的参数 Xo=[0 0];

%起点位置

k=15;%计算引力需要的增益系数

K=0;%初始化

m=5;%计算斥力的增益系数,都是自己设定的。

Po=2.5;%障碍影响距离,当障碍和车的距离大于这个距离时,斥力为0,即不受该障碍的影响。也是自己设定。

n=7;%障碍个数

a=0.5;

l=0.2;%步长

J=200;%循环迭代次数

%如果不能实现预期目标,可能也与初始的增益系数,Po设置的不合适有关。

%end

%给出障碍和目标信息

Xsum=[10 10;1 1.5;3 2.2;4 4.5;3 6;6 2;5.5 6;8 8.2];%这个向量是(n+1)*2维,其中[10 10]是目标位置,剩下的都是障碍的位置。

Xj=Xo;%j=1循环初始,将车的起始坐标赋给Xj

%***************初始化结束,开始主体循环******************

for j=1:J%循环开始

Goal(j,1)=Xj(1);%Goal是保存车走过的每个点的坐标。刚开始先将起点放进该向量。

Goal(j,2)=Xj(2); %调用计算角度模块

Theta=compute_angle(Xj,Xsum,n);%Theta是计算出来的车和障碍,和目标之间的与X轴之间的夹角,统一规定角度为逆时针方向,用这个模块可以计算出来。

%调用计算引力模块

Angle=Theta(1);%Theta(1)是车和目标之间的角度,目标对车是引力。

angle_at=Theta(1);%为了后续计算斥力在引力方向的分量赋值给angle_at

[Fatx,Faty]=compute_Attract(Xj,Xsum,k,Angle,0,Po,n);%计算出目标对车的引力在x,y方向的两个分量值。

for i=1:n

angle_re(i)=Theta(i+1);%计算斥力用的角度,是个向量,因为有n个障碍,就有n个角度。

end

%调用计算斥力模块

[Frerxx,Freryy,Fataxx,Fatayy]=compute_repulsion(Xj,Xsum,m,angle_at,angle_re,n,Po,a);%计算出斥力在x,y方向的分量数组。

%计算合力和方向,这有问题,应该是数,每个j循环的时候合力的大小应该是一个唯一的数,不是数组。应该把斥力的所有分量相加,引力所有分量相加。Fsumyj=Faty+Freryy+Fatayy;%y方向的合力

Fsumxj=Fatx+Frerxx+Fataxx;%x方向的合力

Position_angle(j)=atan(Fsumyj/Fsumxj);%合力与x轴方向的夹角向量 %计算车的下一步位置

Xnext(1)=Xj(1)+l*cos(Position_angle(j));

Xnext(2)=Xj(2)+l*sin(Position_angle(j)); %保存车的每一个位置在向量中

Xj=Xnext; %判断

if ((Xj(1)-Xsum(1,1))>0)&((Xj(2)-Xsum(1,2))>0)%是应该完全相等的时候算作到达,还是只是接近就可以?现在按完全相等的时候编程。

K=j;%记录迭代到多少次,到达目标。

break;

%记录此时的j值

end%如果不符合if的条件,重新返回循环,继续执行。

end%大循环结束 K=j;

Goal(K,1)=Xsum(1,1);%把路径向量的最后一个点赋值为目标

Goal(K,2)=Xsum(1,2);

%***********************************画出障碍,起点,目标,路径点************************* %画出路径

X=Goal(:,1);

Y=Goal(:,2);

%路径向量Goal是二维数组,X,Y分别是数组的x,y元素的集合,是两个一维数组。

x=[1 3 4 3 6 5.5 8 ];%障碍的x坐标

y=[1.5 2.2 4.5 6 2 6 8.2 ];

plot(x,y,'o',10,10,'v',0,0,'ms',X,Y,'.r');

计算角度分程序:

function Y=compute_angle(X,Xsum,n)%Y是引力,斥力与x轴的角度向量,X是起点坐标,Xsum是目标和障碍的坐标向量,是(n+1)*2矩阵

for i=1:n+1%n是障碍数目

deltaX(i)=Xsum(i,1)-X(1);

deltaY(i)=Xsum(i,2)-X(2);

r(i)=sqrt(deltaX(i)^2+deltaY(i)^2);

if deltaX(i)>0

theta=acos(deltaX(i)/r(i));

else

theta=pi-acos(deltaX(i)/r(i));

end

if i==1%表示是目标

angle=theta;

else

angle=theta;

end

Y(i)=angle;%保存每个角度在Y向量里面,第一个元素是与目标的角度,后面都是与障碍的角度

end

计算引力分程序:

function [Yatx,Yaty]=compute_Attract(X,Xsum,k,angle,b,Po,n)%输入参数为当前坐标,目标坐标,增益常数,分量和力的角度

%把路径上的临时点作为每个时刻的Xgoal

R=(X(1)-Xsum(1,1))^2+(X(2)-Xsum(1,2))^2;%路径点和目标的距离平方

r=sqrt(R);%路径点和目标的距离

Yatx=k*r*cos(angle);%angle=Y(1)

Yaty=k*r*sin(angle);

计算斥力分程序:

%斥力计算 function

[Yrerxx,Yreryy,Yataxx,Yatayy]=compute_repulsion(X,Xsum,m,angle_at,angle_re,n,Po,a)%输入参数为当前坐标,Xsum是目标和障碍的坐标向量,增益常数,障碍,目标方向的角 度

Rat=(X(1)-Xsum(1,1))^2+(X(2)-Xsum(1,2))^2;%路径点和目标的距离平方

rat=sqrt(Rat);%路径点和目标的距离

for i=1:n

Rrei(i)=(X(1)-Xsum(i+1,1))^2+(X(2)-Xsum(i+1,2))^2;%路径点和障碍的距离平方

rre(i)=sqrt(Rrei(i));%路径点和障碍的距离保存在数组rrei中

R0=(Xsum(1,1)-Xsum(i+1,1))^2+(Xsum(1,2)-Xsum(i+1,2))^2;

r0=sqrt(R0);

if rre(i)>Po%如果每个障碍和路径的距离大于障碍影响距离,斥力令为0

Yrerx(i)=0;

Yrery(i)=0;

Yatax(i)=0;

Yatay(i)=0;

else

%if r0

if rre(i)

Yrer(i)=m*(1/rre(i)-1/Po)*(1/Rrei(i))*(rat^a);%分解的Fre1向量

Yata(i)=a*m*((1/rre(i)-1/Po)^2)*(rat^a);%分解的Fre2向量

Yrerx(i)=Yrer(i)*cos(angle_re(i));%angle_re(i)=Y(i+1)

Yrery(i)=-1*Yrer(i)*sin(angle_re(i));

Yatax(i)=Yata(i)*cos(angle_at);%angle_at=Y(1)

Yatay(i)=Yata(i)*sin(angle_at);

else

Yrer(i)=m*(1/rre(i)-1/Po)*1/Rrei(i)*Rat;%分解的Fre1向量

Yata(i)=a*m*((1/rre(i)-1/Po)^2)*rat;%分解的Fre2向量

Yrerx(i)=Yrer(i)*cos(angle_re(i));%angle_re(i)=Y(i+1)

Yrery(i)=Yrer(i)*sin(angle_re(i));

Yatax(i)=Yata(i)*cos(angle_at);%angle_at=Y(1)

Yatay(i)=Yata(i)*sin(angle_at);

end

end%判断距离是否在障碍影响范围内

end

Yrerxx=sum(Yrerx);%叠加斥力的分量

Yreryy=sum(Yrery);

Yataxx=sum(Yatax);

Yatayy=sum(Yatay);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值