✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在现代社会中,路径规划算法在许多领域中都扮演着重要的角色。无论是在自动驾驶汽车、无人机、机器人导航还是物流管理等应用中,都需要高效且准确的路径规划算法来实现最优的路径选择。人工势场路径规划算法是一种常用的路径规划方法,它基于势场理论,通过模拟物体在势场中运动的行为来确定最佳路径。
人工势场路径规划算法的主要思想是将环境划分为障碍物区域和自由区域,并为每个区域分配一个势场。势场可以看作是一个能量场,障碍物区域具有较高的势能,而自由区域则具有较低的势能。路径规划的目标是找到一条从起点到终点的路径,使得路径上的势能最小化。
人工势场路径规划算法的基本步骤包括以下几个方面:
-
构建环境模型:将环境分为障碍物区域和自由区域,并为每个区域分配势场。障碍物区域的势能通常设置为较高的值,以阻止路径穿越障碍物。
-
计算势能场:根据环境模型计算每个点的势能值。通常,势能的计算方式可以根据具体的问题进行调整,以获得更好的路径规划效果。
-
确定路径:通过在势能场中模拟物体在势场中运动的过程,确定起点到终点的路径。这可以通过梯度下降等优化算法来实现。
-
路径优化:对于得到的初始路径,可以进行进一步的优化,以获得更平滑、更高效的路径。常见的优化方法包括局部搜索、曲线拟合等。
人工势场路径规划算法的优点之一是其简单性和高效性。它不需要复杂的计算和大量的存储空间,适用于实时路径规划。此外,该算法能够处理多个目标和多个障碍物的情况,具有较好的鲁棒性。
然而,人工势场路径规划算法也存在一些问题。首先,由于势场是由环境模型决定的,因此对于复杂的环境,可能会出现局部最优解的情况。其次,当存在多个目标时,可能会出现目标之间的干扰,导致路径规划结果不理想。此外,人工势场路径规划算法对于动态环境的适应性较差,无法及时更新路径。
为了克服这些问题,研究者们提出了许多改进的人工势场路径规划算法。例如,引入惩罚函数来解决局部最优解问题,使用动态势场来适应动态环境等。这些改进使得人工势场路径规划算法在实际应用中更加可靠和有效。
总结起来,人工势场路径规划算法是一种常用的路径规划方法,它基于势场理论,通过模拟物体在势场中运动的行为来确定最佳路径。尽管存在一些问题,但通过改进和优化,该算法仍然具有广泛的应用前景。在未来的研究中,我们可以进一步探索人工势场路径规划算法在不同领域的应用,并结合其他算法和技术,提高路径规划的精度和效率。
📣 部分代码
%% Specific Lat-Lon to visualization
clear all;
clc;
% You can use that part to visualize specific year !
% take user input for the year they want projected sea rise
yearx = input("Enter the year you would like to learn sea level rise in future: ");
%d = datetime('today');
result = 0.02354*(yearx^2) -91.4*yearx + 8.866e+04 ;
result = result - 88;
% 36-42 lat ---- 26-45 lon is Turkey's parameters
lat_start = 36;
lat_end = 42;
lon_start = 26;
lon_end = 45 ;
% create the map
geolimits([lat_start lat_end],[lon_start lon_end])
geobasemap streets
gtextm("The average sea level rise is " + string(result) + " mm")
⛳️ 运行结果
🔗 参考文献
[1] 杨一波,王朝立.基于改进的人工势场法的机器人避障控制及其MATLAB实现[J].上海理工大学学报, 2013, 35(5):5.DOI:10.3969/j.issn.1007-6735.2013.05.018.
[2] 林腾飞.基于一致性理论的多四旋翼无人机协同编队研究[J].[2023-09-20].
[3] 林洁,张志安.改进人工势场法的路径规划研究[J].机械与电子, 2022(003):040.
[4] 张煌辉.基于动态人工势场的路径规划研究与应用[D].长沙理工大学,2010.DOI:10.7666/d.y1699355.