人工势场路径规划算法研究附Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

在现代社会中,路径规划算法在许多领域中都扮演着重要的角色。无论是在自动驾驶汽车、无人机、机器人导航还是物流管理等应用中,都需要高效且准确的路径规划算法来实现最优的路径选择。人工势场路径规划算法是一种常用的路径规划方法,它基于势场理论,通过模拟物体在势场中运动的行为来确定最佳路径。

人工势场路径规划算法的主要思想是将环境划分为障碍物区域和自由区域,并为每个区域分配一个势场。势场可以看作是一个能量场,障碍物区域具有较高的势能,而自由区域则具有较低的势能。路径规划的目标是找到一条从起点到终点的路径,使得路径上的势能最小化。

人工势场路径规划算法的基本步骤包括以下几个方面:

  1. 构建环境模型:将环境分为障碍物区域和自由区域,并为每个区域分配势场。障碍物区域的势能通常设置为较高的值,以阻止路径穿越障碍物。

  2. 计算势能场:根据环境模型计算每个点的势能值。通常,势能的计算方式可以根据具体的问题进行调整,以获得更好的路径规划效果。

  3. 确定路径:通过在势能场中模拟物体在势场中运动的过程,确定起点到终点的路径。这可以通过梯度下降等优化算法来实现。

  4. 路径优化:对于得到的初始路径,可以进行进一步的优化,以获得更平滑、更高效的路径。常见的优化方法包括局部搜索、曲线拟合等。

人工势场路径规划算法的优点之一是其简单性和高效性。它不需要复杂的计算和大量的存储空间,适用于实时路径规划。此外,该算法能够处理多个目标和多个障碍物的情况,具有较好的鲁棒性。

然而,人工势场路径规划算法也存在一些问题。首先,由于势场是由环境模型决定的,因此对于复杂的环境,可能会出现局部最优解的情况。其次,当存在多个目标时,可能会出现目标之间的干扰,导致路径规划结果不理想。此外,人工势场路径规划算法对于动态环境的适应性较差,无法及时更新路径。

为了克服这些问题,研究者们提出了许多改进的人工势场路径规划算法。例如,引入惩罚函数来解决局部最优解问题,使用动态势场来适应动态环境等。这些改进使得人工势场路径规划算法在实际应用中更加可靠和有效。

总结起来,人工势场路径规划算法是一种常用的路径规划方法,它基于势场理论,通过模拟物体在势场中运动的行为来确定最佳路径。尽管存在一些问题,但通过改进和优化,该算法仍然具有广泛的应用前景。在未来的研究中,我们可以进一步探索人工势场路径规划算法在不同领域的应用,并结合其他算法和技术,提高路径规划的精度和效率。

📣 部分代码

%% Specific Lat-Lon to visualizationclear all;clc;% You can use that part to visualize specific year !% take user input for the year they want projected sea riseyearx = input("Enter the year you would like to learn sea level rise in future: ");%d = datetime('today');result = 0.02354*(yearx^2) -91.4*yearx + 8.866e+04 ;result = result - 88;% 36-42 lat ---- 26-45 lon is Turkey's parameterslat_start = 36;lat_end = 42;lon_start = 26;lon_end = 45 ;% create the mapgeolimits([lat_start lat_end],[lon_start lon_end])geobasemap streetsgtextm("The average sea level rise is " + string(result) + " mm")

⛳️ 运行结果

🔗 参考文献

[1] 杨一波,王朝立.基于改进的人工势场法的机器人避障控制及其MATLAB实现[J].上海理工大学学报, 2013, 35(5):5.DOI:10.3969/j.issn.1007-6735.2013.05.018.

[2] 林腾飞.基于一致性理论的多四旋翼无人机协同编队研究[J].[2023-09-20].

[3] 林洁,张志安.改进人工势场法的路径规划研究[J].机械与电子, 2022(003):040.

[4] 张煌辉.基于动态人工势场的路径规划研究与应用[D].长沙理工大学,2010.DOI:10.7666/d.y1699355.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值