c语言200-500完数,C语言求完数(完全数)(详解版)

问题描述

求某一范围内完数的个数。

如果一个数等于它的因子之和,则称该数为“完数”(或“完全数”)。例如,6的因子为1、2、3,而 6=1+2+3,因此6是“完数”。

问题分析

根据完数的定义,解决本题的关键是计算出所选取的整数i(i的取值范围不固定)的因子(因子就是所有可以整除这个数的数),将各因子累加到变量s (记录所有因子之和),若s等于i,则可确认i为完数,反之则不是完数。

算法设计

对于这类求某一范围(由于本题范围不固定,在编程过程中采用键盘输入的方式)内满足条件的数时,一般釆用遍历的方式,对给定范围内的数值一个一个地去判断是否满足条件,这一过程可利用循环来实现。

本题的关键是求出选取数值i的因子,即从1到i-1范围内能整除i的数,看某一个数j是否为i的因子,可利用语句if(i%j==0)进行判断,求某一个数的所有因子,需要在1到i-1范围内进行遍历,同样釆用循环实现。因此,本题从整体上看可利用两层循环来实现。外层循环控制该数的范围2〜n;内层循环j控制除数的范围为1〜i,通过i对j取余,是否等于0,找到该数的各个因子。

另外应注意每次判断下一个选定数之前,必须将变量s的值重新置为0,编程过程中一定要注意变量s重新置0的位置。

程序流程图:

11231IL0-0.png

下面是完整的代码:

#include

int main()

{

int i,j,s,n; /*变量i控制选定数范围,j控制除数范围,s记录累加因子之和*/

printf("请输入所选范围上限:");

scanf("%d",&n); /* n的值由键盘输入*/

for( i=2; i<=n; i++ )

{

s=0; /*保证每次循环时s的初值为0*/

for( j=1; j

{

if(i%j == 0) /*判断j是否为i的因子*/

s += j;

}

if(s == i) /*判断因子这和是否和原数相等*/

printf("It's a perfect number:%d\n",i);

}

return 0;

}

运行结果:

请输入所选范围上限:10000↙︎

It's a perfect number:6

It's a perfect number:28

It's a perfect number:496

It's a perfect number:8128

知识点补充

上述程序中求某数的因子时,釆用从1到i-1范围内进行遍历的方法,一个数一个数地去试。这种方法可以做到没有遗漏,但是效率不高。

对于某一整数来说,其最大因子为n/2 (若n为偶数时,若为奇数最大因子小于n/2),在n/2〜n-1范围内没有数据可以整除此数。据此,我们可以把遍历范围缩小至1〜n-1,这样程序效率可以提高一倍。相应程序如下:

#include>

int main()

{

//...

for( i=2; i<=1000; i++)

{

s=0;

for( j=1; j<=n/2; j++ )

{

if(i%j == 0)

s += j;

}

//...

}

}

总结

以上是编程之家为你收集整理的C语言求完数(完全数)(详解版)全部内容,希望文章能够帮你解决C语言求完数(完全数)(详解版)所遇到的程序开发问题。

如果觉得编程之家网站内容还不错,欢迎将编程之家网站推荐给程序员好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。

小编个人微信号 jb51ccc

喜欢与人分享编程技术与工作经验,欢迎加入编程之家官方交流群!

Semi-supervised classification with graph convolutional networks (GCNs) is a method for predicting labels for nodes in a graph. GCNs are a type of neural network that operates on graph-structured data, where each node in the graph represents an entity (such as a person, a product, or a webpage) and edges represent relationships between entities. The semi-supervised classification problem arises when we have a graph where only a small subset of nodes have labels, and we want to predict the labels of the remaining nodes. GCNs can be used to solve this problem by learning to propagate information through the graph, using the labeled nodes as anchors. The key idea behind GCNs is to use a graph convolution operation to aggregate information from a node's neighbors, and then use this aggregated information to update the node's representation. This operation is then repeated over multiple layers, allowing the network to capture increasingly complex relationships between nodes. To train a GCN for semi-supervised classification, we use a combination of labeled and unlabeled nodes as input, and optimize a loss function that encourages the network to correctly predict the labels of the labeled nodes while also encouraging the network to produce smooth predictions across the graph. Overall, semi-supervised classification with GCNs is a powerful and flexible method for predicting labels on graph-structured data, and has been successfully applied to a wide range of applications including social network analysis, drug discovery, and recommendation systems.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值