实验六
双三次
Bezier
曲面
一、实验目的
根据
Bizer
曲面的基础知识和数学基础,对其算法进行程序设计,验证算法的正确性,
并通过程序结果加深对常用曲面数学模型的理解。
二、实验任务(
2
学时)
Bezier
曲面算法及其程序设计。
三、实验内容和实验步骤
1
、算法描述
Bezier
曲面是由
Bezier
曲线拓广而来,以两组正交的
Bezier
曲线控制点构造空间网格
来生成曲面。
m×
n
次张量积形式的
Bezier
曲面的定义如下
(
参照教材
P200
式
7-20)
:
(
u
,
v
)∈〔
0
,
1
〕
×
〔
0
,
1
〕
双三次
Bezier
曲面定义如下
(
参照教材
P201
式
7-21)
:
(
u
,
v
)∈〔
0
,
1
〕
×
〔
0
,
1
〕
展开上式,有
代入得到:
)
(
)
(
)
,
(
m
0
i
,
,
0
,
v
B
u
B
P
v
u
p
n
j
m
i
n
j
j
i
3
3
,
,3
,3
i
0
0
(
,
)
(
)
(
)
i
j
i
j
j
p
u
v
P
B
u
B
v
0,3
0,0
0,1
0,2
0,3
1,3
1,0
1,1
1,2
1,3
0,3
1,3
2,3
3,3
2,0
2,1
2,2
2,3
2,3
3,0
3,1
3,2
3,3
3,3
(
)
(
)
(
,
)
(
)
(
)
(
)
(
)
(
)
(
)
B
v
P
P
P
P
B
v
P
P
P
P
p
u
v
B
u
B
u
B
u
B
u
P
P
P
P
B
v
P
P
P
P
B
v
3
2
0,3
3
2
1,3
3
2
2,3
3
3,3
(
)
3
3
1
(
)
3
6
3
(
)
3
3
(
)
B
u
u
u
u
B
u
u
u
u
B
u
u
u
B
u
u
3
2
0,3
3
2
1,3
3
2
2,3
3
3,3
(
)
3
3
1
(
)
3
6
3
(
)
3
3
(
)
B
v
v
v
v
B
v
v
v
v
B
v
v
v
B
v
v
0,0
0,1
0,2
0,3
1,0
1,1
1,2
1,3
3
2
2,0
2,1
2,2
2,3
3,0
3,1
3,2
3,3
1
3
3
1
3
6
3
0
(
,
)
1
3
3
0
0
1
0
0
0
P
P
P
P
P
P
P
P
p
u
v
u
u
u
P
P
P
P
P
P
P
P
3
2
1
3
3
1
3
6
3
0
3
3
0
0
1
0
0
0
1
v
v
v