opengl双三次bezier曲面_双三次Bezier曲面

该博客介绍了如何使用OpenGL编程实现双三次Bezier曲面。通过理解Bezier曲面的数学基础,博主详细阐述了算法原理,并提供了算法描述,包括张量积形式的Bezier曲面定义及双三次Bezier曲面的展开公式。实验旨在验证算法正确性,加深对空间曲面数学模型的理解。
摘要由CSDN通过智能技术生成

实验六

双三次

Bezier

曲面

一、实验目的

根据

Bizer

曲面的基础知识和数学基础,对其算法进行程序设计,验证算法的正确性,

并通过程序结果加深对常用曲面数学模型的理解。

二、实验任务(

2

学时)

Bezier

曲面算法及其程序设计。

三、实验内容和实验步骤

1

、算法描述

Bezier

曲面是由

Bezier

曲线拓广而来,以两组正交的

Bezier

曲线控制点构造空间网格

来生成曲面。

n

次张量积形式的

Bezier

曲面的定义如下

(

参照教材

P200

7-20)

(

u

v

)∈〔

0

1

×

0

1

双三次

Bezier

曲面定义如下

(

参照教材

P201

7-21)

(

u

v

)∈〔

0

1

×

0

1

展开上式,有

代入得到:

)

(

)

(

)

,

(

m

0

i

,

,

0

,



v

B

u

B

P

v

u

p

n

j

m

i

n

j

j

i

3

3

,

,3

,3

i

0

0

(

,

)

(

)

(

)

i

j

i

j

j

p

u

v

P

B

u

B

v



0,3

0,0

0,1

0,2

0,3

1,3

1,0

1,1

1,2

1,3

0,3

1,3

2,3

3,3

2,0

2,1

2,2

2,3

2,3

3,0

3,1

3,2

3,3

3,3

(

)

(

)

(

,

)

(

)

(

)

(

)

(

)

(

)

(

)

B

v

P

P

P

P

B

v

P

P

P

P

p

u

v

B

u

B

u

B

u

B

u

P

P

P

P

B

v

P

P

P

P

B

v

3

2

0,3

3

2

1,3

3

2

2,3

3

3,3

(

)

3

3

1

(

)

3

6

3

(

)

3

3

(

)

B

u

u

u

u

B

u

u

u

u

B

u

u

u

B

u

u

3

2

0,3

3

2

1,3

3

2

2,3

3

3,3

(

)

3

3

1

(

)

3

6

3

(

)

3

3

(

)

B

v

v

v

v

B

v

v

v

v

B

v

v

v

B

v

v

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

3

2

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

1

3

3

1

3

6

3

0

(

,

)

1

3

3

0

0

1

0

0

0

P

P

P

P

P

P

P

P

p

u

v

u

u

u

P

P

P

P

P

P

P

P

3

2

1

3

3

1

3

6

3

0

3

3

0

0

1

0

0

0

1

v

v

v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值