1 引言
有源电力滤波器(APF)是一种能动态抑制谐波和补偿无功的电力电子装置,相比传统的无源滤波器,无疑是一种更高效、更智能的改善电网环境的手段。谐波电流的检测直接影响到有源电力滤波器的补偿效果。基于FFT的谐波电流检测方法以傅里叶分析为基础,优点是检测精度高,缺点是计算量大、耗时长、不适合适时控制且难以实现时变谐波的检测。以三相电路瞬时无功功率理论为基础,以计算瞬时有功功率p、瞬时无功功率q或瞬时有功电流ip、瞬时无功电流iq为出发点,可以衍生出多种谐波电流检测方法,如p-q运算方式、ip-iq运算方式及它们的改进型算法基于瞬时无功功率理论的电流检测方法,以瞬时功率或瞬时电流的分解为基础,检测精度高、延时小、动态特性好,在有源电力滤波器中得到了广泛应用。然而,在电压非正弦和不对称条件下,基于该理论定义的瞬时功率、瞬时电流不再有明确的物理意义,且不能包含零序分量的信息,因而限制了它的应用范围。本文以dq0坐标系下的广义瞬时无功功率理论为基础,通过坐标变换,将abc坐标系下的三相瞬时电流ia、ib、ic变换到dq0坐标系下的瞬时电流id、iq、i0,通过分析dq0坐标系下瞬时电流的表达式,对电流进行分解,进而得出基于瞬时电流分解的谐波电流检测方法。仿真结果表明该方法能准确有效地检测出谐波电流,可用于有源电力滤波装置的研制。
2 dq0坐标系下的瞬时电流分解
2.1 坐标变换
对任意三相系统(对称或非对称、正弦或非正弦),通过傅里叶分解和对称变换总可以将三相电流变换成如下形式:
式中,ω 为基波角频率,In+、In-、In0 别是电流中对应n次谐波正序、负序和零序分量的有效值