opencv cv::Mat数据类型总结

本文详细介绍了在使用OpenCV处理图像时,如何确定矩阵元素的数据类型及其与通道数的关系,包括使用at方法访问不同数据类型的矩阵元素的具体方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在以下两个场景中使用OpenCV时,我们必须事先知道矩阵元素的数据类型:

  • 使用 at 方法访问数据元素的时候要指明数据类型
  • 做数值运算的时候,比如究竟是整数除法还是浮点数除法。

cv::Mat 类的对象有一个成员函数type()用来返回矩阵元素的数据类型,

返回值是 int 类型,不同的返回值代表不同的类型,具体对应关系如下所示:

类型C1C2C3C4
CV_8U081624
CV_8U191725
CV_8U2101826
CV_8U3111927
CV_8U4122028
CV_8U5132129
CV_8U6142230

表头的 C1, C2, C3, C4 指的是通道(Channel)数,例如:

  • 灰度图像只有 1 个通道,是 C1;

  • JPEG格式 的 RGB 彩色图像就是 3 个通道,是 C3

  • PNG 格式的彩色图像除了 RGB 3个通道外,还有一个透明度通道,所以是 C4。

如果仅仅是为了在数值计算前明确数据类型,那么看到这里就可以了

如果是要使用 at 方法访问数据元素,那么还需要下面一步

因为以单通道为例,at 方法接受的是 uchar 这样的数据类型,而非 CV_8U。

在已知通道数和每个通道数据类型的情况下,指定给 at 方法的数据类型如下表所示:

类型C1C2C3C4C6
ucharucharcv::Vec2bcv::Vec3bcv::Vec4b
shortshortcv::Vec2scv::Vec3scv::Vec4b
intintcv::Vec2icv::Vec3icv::Vec4i
floatfloatcv::Vec2fcv::Vec3fcv::Vec4fcv::Vec6f
doubledoublecv::Vec2dcv::Vec3dcv::Vec4dcv::Vec6f

现在,就可以使用at来访问图像的像素了:

    cv::Vec3b vec3b = img.at<cv::Vec3b>(0,0);
    uchar vec3b0 = img.at<cv::Vec3b>(0,0)[0];
    uchar vec3b1 = img.at<cv::Vec3b>(0,0)[1];
    uchar vec3b2 = img.at<cv::Vec3b>(0,0)[2];
    std::cout<<"vec3b = "<<vec3b<<std::endl;
    std::cout<<"vec3b0 = "<<(int)vec3b0<<std::endl;
    std::cout<<"vec3b1 = "<<(int)vec3b1<<std::endl;
    std::cout<<"vec3b2 = "<<(int)vec3b2<<std::endl;

上述数据类型以及取值范围

数值具体类型取值范围
CV_8U8 位无符号整数(0……255)
CV_8S8 位符号整数(-128……127)
CV_16U16 位无符号整数(0……65535)
CV_16S16 位符号整数(-32768……32767)
CV_32S32 位符号整数(-2147483648……2147483647)
CV_32F32 位浮点数(-FLT_MAX ………FLT_MAX,INF,NAN)
CV_64F64 位浮点数(-DBL_MAX ……….DBL_MAX,INF,NAN)

Vec类的定义:

template<typename _Tp, int n> class Vec : public Matx<_Tp, n, 1> {...};

typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;

typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;

typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;

typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;

typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;

typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;

参考链接:https://www.jianshu.com/p/204f292937bb

<think>嗯,用户想了解OpenCVcv::Mat::zeros的用法。首先,我得回忆一下这个函数的作用。它是用来创建一个全零矩阵的静态成员函数,对吧?那应该包括参数、返回类型以及使用场景。 用户可能刚接触OpenCV,需要详细的步骤解释。应该先说明函数的基本功能,然后参数的含义,比如rows和cols,还有数据类型type。要注意解释type的组成,比如CV_8UC3这样的格式,可能用户不太清楚通道数的意义,需要举例说明。 然后,创建示例代码的时候,要确保语法正确,并且用中文注释。可能需要提到不同的数据类型应用场景,比如灰度图和彩色图。还要指出rows和cols为0时的特殊情况,虽然这种情况可能不常见,但需要说明。 另外,用户可能想知道为什么用zeros而不是直接赋值0,这时候要解释效率和便利性。可能还要对比其他创建矩阵的方法,比如Mat::ones或者直接构造函数,但这里重点在zeros。 有没有可能用户会遇到初始化矩阵的问题,比如类型不匹配或者尺寸错误?这时候需要提醒正确选择参数。另外,应用场景部分可以举图像处理中的例子,比如滤波前的初始化或者掩膜创建。 要确保结构清晰,分步骤讲解,可能用列表或者分段。同时检查是否有LaTeX格式的问题,行内公式用$...$,独立公式用$$...$$。不过问题中可能涉及代码示例,所以这部分可能需要用代码块,但用户没有提到代码格式,所以按常规方式处理。 最后,总结一下注意事项,帮助用户避免常见错误。比如数据类型和通道数的重要性,以及正确使用rows和cols。可能还需要提到OpenCV的文档链接,但用户没有要求,所以可能不需要。</think>以下是关于OpenCV中 `cv::Mat::zeros` 的详细分步解析: --- ### 一、`cv::Mat::zeros` 的功能 `cv::Mat::zeros` 是OpenCV中用于**创建全零矩阵**的静态成员函数。它的核心用途是快速初始化一个指定尺寸和数据类型的矩阵,所有元素初始值为0。 --- ### 二、函数原型 ```cpp static Mat Mat::zeros(int rows, int cols, int type); ``` - **参数说明**: - `rows`:矩阵的行数(高度) - `cols`:矩阵的列数(宽度) - `type`:矩阵的数据类型和通道数,例如 `CV_8UC1`(单通道8位无符号整数) --- ### 三、核心特性与使用步骤 1. **初始化全零矩阵** ```cpp cv::Mat mat = cv::Mat::zeros(3, 3, CV_32FC1); ``` 生成一个3x3的单通道浮点矩阵,所有元素初始化为0.0f。 2. **数据类型与通道控制** - `type` 的格式为 `CV_<位数><类型>C<通道数>` 例如: - `CV_8UC1`:单通道8位无符号整数(灰度图常用) - `CV_32FC3`:3通道32位浮点数(彩色图处理) 3. **返回值** - 返回一个 `cv::Mat` 对象,内存自动管理 --- ### 四、代码示例 ```cpp #include <opencv2/opencv.hpp> int main() { // 示例1:创建3x3单通道全零矩阵 cv::Mat mat1 = cv::Mat::zeros(3, 3, CV_8UC1); std::cout << "mat1 = \n" << mat1 << std::endl; // 示例2:创建2x2三通道全零矩阵(用于彩色图像) cv::Mat mat2 = cv::Mat::zeros(2, 2, CV_8UC3); std::cout << "mat2 = \n" << mat2 << std::endl; return 0; } ``` **输出**: ``` mat1 = [ 0, 0, 0; 0, 0, 0; 0, 0, 0] mat2 = [ 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0] ``` --- ### 五、应用场景 1. **图像处理初始化**:为滤波器、掩膜操作预分配内存 2. **算法中间结果存储**:如累积梯度、积分图计算 3. **矩阵运算占位符**:避免未初始化内存导致的随机值问题 --- ### 六、注意事项 1. **数据类型匹配**:确保 `type` 与实际需求一致(如浮点运算需用 `CV_32F`) 2. **尺寸有效性**:`rows` 和 `cols` 必须为非负数(但允许为0,此时矩阵为空) 3. **效率优势**:比手动循环赋值更高效,直接调用底层优化代码 --- ### 七、对比其他初始化方法 | 方法 | 特点 | 示例 | |---------------------|--------------------------|----------------------------| | `Mat::zeros` | 全零初始化,高效 | `Mat::zeros(2,2,CV_8UC1)` | | `Mat::ones` | 全1初始化 | `Mat::ones(2,2,CV_32F)` | | `Mat::eye` | 单位矩阵初始化 | `Mat::eye(3,3,CV_64FC1)` | | 构造函数直接初始化 | 灵活但需手动填充数据 | `Mat(2,2,CV_8UC1, Scalar(0))` | --- 通过以上步骤,可以快速掌握 `cv::Mat::zeros` 的核心用法及其在OpenCV开发中的实际价值。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值