Resnet 50 结构中的stage1~4分别是什么作用,请详细介绍每一层

ResNet50是一个深度卷积网络,由四个阶段组成,每个阶段包含不同数量的卷积和池化层,逐步深入提取图像特征,用于图像分类等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ResNet50是一种常用的深度卷积神经网络,它的结构包含4个阶段:

  1. Stage 1:包含3个卷积层和2个池化层,主要负责对输入图像进行特征提取。

  2. Stage 2:包含4个卷积层和2个池化层,主要负责对第一阶段提取的特征进一步加深和提升。

  3. Stage 3:包含6个卷积层和2个池化层,主要负责对第二阶段提取的特征进一步加深和提升。

  4. Stage 4:包含3个卷积层和1个池化层,主要负责对第三阶段提取的特征进一步加深和提升。

总的来说,这4个阶段的主要作用是对输入图像的特征进行提取和加深,以便后续的图像分类或其他任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值