编写一个卷积神经网络识别汉服领型的代码

文章提供了一个利用PythonKeras库构建的卷积神经网络(CNN)模型示例,用于识别汉服的领型。代码中涉及到的数据预处理步骤包括使用ImageDataGenerator,并详细列出了模型架构,包括Conv2D,MaxPooling2D,Dropout等层的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我可以提供一个基于卷积神经网络的示例代码来识别汉服领型:import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.preprocessing.image import ImageDataGenerator

加载训练数据

train_data_dir = 'dat

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值