LM Studio、ollama本地部署运行多个AI

1. 为什么要本地部署?

原因一:快!最主要的原因就是快!!由于现在很多人使用,所以在运行的时候会很慢,为了提升效率,自己部署一台或者多台本地AI;
原因二:所有运营AI都会由于过滤敏感信息,所以会存在信息丢失。

2. 如何选择工具

如果你想在本地运行多个 AI,可以考虑以下几种方案,具体取决于你的需求:

LM Studio(适合本地运行大语言模型)

  • 特点:支持多个本地 LLM(如 LLaMA、Mistral、DeepSeek 等),界面友好,支持 Windows、macOS 和 Linux。
  • 适用场景:本地运行大语言模型,离线聊天。
  • 官网https://lmstudio.ai

ollama(轻量级 LLM 运行工具)

  • 特点:命令行工具,简洁易用,支持拉取多个模型,适用于 Mistral、LLaMA、Gemma 等。
  • 适用场景:快速部署和切换多个 LLM。
  • 官网https://ollama.com

Text Generation WebUI(多模型管理)

ComfyUI(Stable Diffusion AI 生成图像)

  • 特点:节点式操作,支持多个 AI 模型(如 SDXL、DeepFloyd IF)。
  • 适用场景
### 如何使用 LM Studio 进行大语言模型的本地离线部署 #### 工具简介 LM Studio 是一种支持多种操作系统并允许用户在本地环境中运行各种大规模语言模型 (LLM) 的免费工具[^1]。它提供了直观的操作界面以及便捷的功能模块,使得开发者能够轻松完成模型加载、配置和测试。 #### 下载与安装 为了获取 LM Studio 应用程序,需访问其官方站点,并依据目标设备所使用的操作系统版本选择合适的客户端下载链接[^2]。一旦文件被成功传输到计算机上,则按照标准流程执行安装指令即可完成初始化设置过程。 #### 私有数据库集成 如果计划利用自定义资料训练或者微调某个特定领域内的 LLM 实例,那么可以考虑引入 Anything LLM 平台作为辅助解决方案之一[^3]。此方案不仅有助于将各类结构化或非结构化的外部资源转化为可供机器学习算法理解的形式,而且还能进一步增强最终产出物的知识覆盖面及其应用价值。 #### Google Gemma 模型实例 针对具体案例而言,《本地快速部署谷歌开放模型Gemma教程》详细描述了一个完整的实践路径——即通过采用 LM Studio 来实现对来自 Alphabet 子公司 DeepMind 所发布的预训练成果的有效迁移工作流[^4]。该文档涵盖了从前期准备阶段直至后期效果评估环节在内的全部必要步骤说明。 #### 使用 Ollama 加速体验 另外,在某些场景下可能还会涉及到其他配套组件的选择问题,比如当决定尝试 Facebook Meta 推出的新一代序列预测框架 Llama 3.1 版本时,就可以借助名为 “Ollama” 的轻量化管理器来优化整体性能表现水平[^5]: ```bash # 安装ollama命令行工具 curl https://get.ollama.ai/install.sh | sh # 启动服务端口监听 ollama serve & ``` 以上脚本展示了如何迅速建立起一个基础环境以便后续接入更多高级特性选项。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风细雨_林木木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值